Morphology evolution of gold nanoparticles as function of time, temperature, and Au(III)/sodium ascorbate molar ratio

  • Ornella Priolisi
  • Alberto Fabrizi
  • Giovanna Deon
  • Franco Bonollo
  • Stefano Cattini
Research Paper


In this work the morphology evolution of Au nanoparticles (AuNPs), obtained by direct reduction, was studied as a function of time, temperature, and Au(III)/sodium ascorbate molar ratio. The NPs morphology was examined by transmission electron microscope with image analysis, while time evolution was investigated by visible and near-infrared absorption spectroscopy and dynamic light scattering. It is found that initially formed star-like NPs transform in more spheroidal particles and the evolution appears more rapid by increasing the temperature while a large amount of reducing agent prevents the remodeling of AuNPs. An explication of morphology evolution is proposed.

Graphical Abstract


Gold nanoparticles Star-like morphology Crystal growth Multi-twinned particles NPs nucleation NPs morphology evolution 



The authors would like to thank all the students of “De Pretto” Technical Institute (Schio, Italy) who participated in this work by providing a valuable technical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no potential conflict of interest.


  1. Alivisatos AP (1996) Semiconductor clusters nanocrystals and quantum dots. Science 271:933–937CrossRefGoogle Scholar
  2. Astruc D (2008) Nanoparticles and catalysis. Wiley-VCH, GermanyGoogle Scholar
  3. Bedeaux D, Vlieger J (1974) A statistical theory of the dielectric properties of thin island films. I-The surface material coefficients. Physica 73:287–311CrossRefGoogle Scholar
  4. Bedeaux D, Vlieger J (1983) A statistical theory for the dielectric properties of thin island films - Application and comparison with experimental results. Thin Solid Films 102:265–281CrossRefGoogle Scholar
  5. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley-VCH, WeinheimGoogle Scholar
  6. Casu A, Cabrini E, Donà A, Falqui A, Diaz-Fernandez Y, Milanese C, Taglietti A, Pallavicini P (2012) Controlled synthesis of gold nanostars by using a zwitterionic surfactant. Chem Eur J 18:9381–9390CrossRefGoogle Scholar
  7. Chen S, Wang ZL, Ballato J, Foulger SH, Carroll DL (2003) Monopod, bipod, tripod and tetrapod gold nanocrystals. J Am Chem Soc 125:16186–16187CrossRefGoogle Scholar
  8. Clippe P, Evrard R, Lucas AA (1976) Aggregation effect on the infrared absorption spectrum of small ionic crystals. Phys Rev B 14:1715–1721CrossRefGoogle Scholar
  9. Compton OC, Osterloh FE (2007) Evolution of size and shape in the colloidal crystallization of gold nanoparticles. J Am Chem Soc 129:7793–7798CrossRefGoogle Scholar
  10. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly supramolecular chemistry quantum-size-related properties and applications toward biology catalysis and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  11. Dıez Orrite S, Stoll S, Schurtenberger P (2005) Off-lattice Monte Carlo simulations of irreversible and reversible aggregation processes. Soft Matter 1:364–371CrossRefGoogle Scholar
  12. Dumur F, Guerlin A, Dumas E, Bertin D, Gigmes D, Mayer CR (2011) Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents. Gold Bull 44:119–137CrossRefGoogle Scholar
  13. Garnett JCM (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc 203:385–420CrossRefGoogle Scholar
  14. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862CrossRefGoogle Scholar
  15. Gorshkov V, Zavalov A, Privman V (2009) Shape selection in diffusive growth of colloids and nanoparticles. Langmuir 25:7940–7953CrossRefGoogle Scholar
  16. Goia DV, Matijević E (1999) Tailoring the particle size of monodispersed colloidal gold. Colloid Surf A 146:139–152CrossRefGoogle Scholar
  17. Guerrero-Martínez A, Barbosa S, Pastoriza-Santos I, Liz-Marzán LM (2011) Nanostars shine bright for you: colloidal synthesis properties and applications of branched metallic nanoparticles. Curr Opin Colloid Interface Sci 16:118–127CrossRefGoogle Scholar
  18. Haiss W, Thanh NTK, Aveyard J, Ferning DG (2007) Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal Chem 79:4215–4221CrossRefGoogle Scholar
  19. Hayat MA (1991) Colloidal gold: principles, methods and applications. Academic Press, San DiegoGoogle Scholar
  20. Henry AI, Bingham JM, Ringe E, Marks LD, Schatz GC, Van Duyne RP (2011) Correlated structure and optical property studies of plasmonic nanoparticles. J Phys Chem C 115:9291–9305CrossRefGoogle Scholar
  21. Hofmeister H (2009) Shape variations and anisotropic growth of multiply twinned nanoparticles. Z Kristallogr 224:528–538Google Scholar
  22. Hornyak G, Moore JJ, Tibbals HF, Dutta J (2009) Fundamentals of nanotechnology. CRC Press, FloridaGoogle Scholar
  23. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size shape and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  24. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707CrossRefGoogle Scholar
  25. Kreibig U, Vollmer M (1995) Optical properties of metal cluster. Springer, HeidelbergCrossRefGoogle Scholar
  26. Kumar PS, Pastoriza-Santos I, Rodrıguez-Gonzalez B, Garcıa de Abajo FJ, Liz-Marzan LM (2008) High-yield synthesis and optical response of gold nanostars. Nanotechnology 19:015606–015612CrossRefGoogle Scholar
  27. LaMer VK, Dinegar RH (1950) Theory production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854CrossRefGoogle Scholar
  28. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217CrossRefGoogle Scholar
  29. Louis C, Pluchery O (2012) Gold nanoparticles for physics, chemistry and biology. Imperial College Press, LondonCrossRefGoogle Scholar
  30. Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia Y (2009) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60:167–192CrossRefGoogle Scholar
  31. Luty-Błocho M, Pacławski K, Wojnicki M, Fitzner K (2013) The kinetics of redox reaction of gold(III) chloride complex ions with L-ascorbic acid. Inorg Chim Acta 395:189–196CrossRefGoogle Scholar
  32. Marqusee JA, Ross J (1983) Kinetics of phase transitions: theory of Ostwald ripening. J Chem Phys 79:373–378CrossRefGoogle Scholar
  33. Marqusee JA, Ross J (1984) Theory of Ostwald ripening: competitive growth and its dependence on volume fraction. J Chem Phys 80:536–543CrossRefGoogle Scholar
  34. Mayergoyz ID (2013) Plasmon resonances in nanoparticles. World Scientific Publishing Co, SingaporeCrossRefGoogle Scholar
  35. Mazzucco S, Stéphan O, Colliex C, Pastoriza-Santos I, Liz-Marzán LM, García de Abajo J, Kociak M (2011) Spatially resolved measurements of plasmonic eigenstates in complex-shaped asymmetric nanoparticles: gold nanostars. Eur Phys J Appl Phys 54:33512CrossRefGoogle Scholar
  36. McClurg RB (2002) Nucleation rate and primary particle size distribution. J Chem Phys 117:5328–5336CrossRefGoogle Scholar
  37. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li TJ (2005) Anisotropic metal nanoparticles: synthesis assembly and optical applications. J Phys Chem B 109:13857–13870CrossRefGoogle Scholar
  38. Pallavicini P, Chirico G, Collini M, Dacarro G, Donà A, D’Alfonso L, Falqui A, Diaz-Fernandez Y, Freddi S, Garofalo B et al (2011) Synthesis of branched Au nanoparticles with tunable near-infrared LSPR using a zwitterionic surfactant. Chem Commun 47:1315–1317CrossRefGoogle Scholar
  39. Pallavicini P, Donà A, Casu A, Chirico G, Collini M, Dacarro G, Falqui A, Milanese C, Sironi L, Taglietti A (2013) Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chem Commun 49:6265–6267CrossRefGoogle Scholar
  40. Park J, Privman V, Matijevic E (2001) Model of formation of monodispersed colloids. J Phys Chem B 105:11630–11635CrossRefGoogle Scholar
  41. Patala S, Marks LD, Olvera de la Cruz M (2013) Thermodynamic analysis of multiply-twinned particles: surface stress effects. J Phys Chem Lett 4:3089–3094CrossRefGoogle Scholar
  42. Pong BK, Elim HI, Chong JX, Ji W, Trout BL, Lee JY (2007) New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III) salt: formation of the Au nanowire intermediate and its nonlinear optical properties. J Phys Chem C 111:6281–6287CrossRefGoogle Scholar
  43. Privman V, Goia DV, Park J, Matijevic E (1999) Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors. J Colloid Interface Sci 213:36–45CrossRefGoogle Scholar
  44. Richards V (2010) Nucleation control in size and dispersity in metallic nanoparticles: the prominent role of particle aggregation. Dissertation: Washington UniversityGoogle Scholar
  45. Ringe E, Langille MR, Sohn K, Zhang J, Huang JX, Mirkin CA, Van Duyne RP, Marks LD (2012) Plasmon length: a universal parameter to describe size effects in gold nanoparticles. J Phys Chem Lett 3:1479–1483CrossRefGoogle Scholar
  46. Robb DT, Privman V (2008) Model of nanocrystal formation in solution by burst nucleation and diffusional growth. Langmuir 24:26–35CrossRefGoogle Scholar
  47. Robb DT, Halaciuga I, Privman V, Goia DV (2008) Computational model for the formation of uniform silver spheres by aggregation of nanosize precursors. J Chem Phys 129:184705–184711CrossRefGoogle Scholar
  48. Romero I, Aizpurua J, Bryant GW, García de Abajo FJ (2006) Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt Express 14:9988–9999CrossRefGoogle Scholar
  49. Sarid D, Challener WA (2009) Modern introduction to surface plasmons. Cambridge University Press, CambridgeGoogle Scholar
  50. Schoenauer D, Kreibig U (1985) Topography of samples with variably aggregated metal particles. Surf Sci 156:100–111CrossRefGoogle Scholar
  51. Shore JD, Perchak D, Shnidman Y (2000) Simulations of the nucleation of AgBr from solution. J Chem Phys 113:6276–6284CrossRefGoogle Scholar
  52. Sperling RA, Rivera GP, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908CrossRefGoogle Scholar
  53. Stathis EC, Fabrikanos A (1958) Preparation of colloidal gold. Chem Ind 27:860–861Google Scholar
  54. Streszewskia B, Jaworski W, Pacławski K, Csapo E, Dekany I, Fitzner K (2012) Gold nanoparticles formation in the aqueous system of gold(III) chloride complex ions and hydrazine sulfate—kinetic studies. Colloids Surf A 397:63–72CrossRefGoogle Scholar
  55. Turkevich J (1985a) Colloidal gold. Part I. Gold Bull 18:86–91CrossRefGoogle Scholar
  56. Turkevich J (1985b) Colloidal gold. Part II. Gold Bull 18:125–131CrossRefGoogle Scholar
  57. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  58. Turkevich J, Stevenson PC, Hillier J (1953) The formation of colloidal gold. J Phys Chem 57:670–673CrossRefGoogle Scholar
  59. Van de Broek B, Grandjean D, Trekker J, Ye J, Verstreken K, Maes G, Borghs G, Nikitenko S, Lagae L, Bartic C, Temst K et al (2011) Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy. Small 7:2498–2506Google Scholar
  60. Vlieger J, Bedeaux D (1985) A statistical theory for the dielectric properties of thin island films: application and comparison with experimental results. Thin Solid Films 102:265–281Google Scholar
  61. Voorhees PW (1985) The theory of Ostwald ripening. J Stat Phys 38:231–252CrossRefGoogle Scholar
  62. Voorhees PW, Glicksman ME (1984) Solution to the multi-particle diffusion problem with applications to Ostwald ripening—I theory. Acta Metall 32:2001–2011CrossRefGoogle Scholar
  63. Watzky MA, Finke RG (1997) Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc 119:10382–10400CrossRefGoogle Scholar
  64. Xia Y, Xiong Y, Lim Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed Eng 48:60–103CrossRefGoogle Scholar
  65. Zumreoglu-Karan J (2009) A rationale on the role of intermediate Au(III)–vitamin C complexation in the production of gold nanoparticles. J Nanopart Res 11:1099–1105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ornella Priolisi
    • 1
  • Alberto Fabrizi
    • 2
  • Giovanna Deon
    • 1
  • Franco Bonollo
    • 2
  • Stefano Cattini
    • 3
  1. 1.ITIS “De Pretto”SchioItaly
  2. 2.Department of Management and EngineeringUniversity of PadovaVicenzaItaly
  3. 3.Department of Engineering Enzo FerrariUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations