Selective hydrogenation of 2-methyl-3-butyn-2-ol catalyzed by embedded polymer-protected PdZn nanoparticles

  • Lyudmila B. OkhlopkovaEmail author
  • Ekaterina V. Matus
  • Igor P. Prosvirin
  • Michail A. Kerzhentsev
  • Zinfer R. Ismagilov
Research Paper


PdZn/TiO2 catalysts were synthesized by sol–gel method using a template Pluronic F127. PdZn nanoparticles with the size ranging from 1.7 to 2 nm were prepared by ethylene glycol reduction of ZnCl2 and Pd(CH3COO)2 in the presence of stabilizer and introduced into the matrix by addition into TiO2 sol, followed by different activation procedures. The structure, particles size, and chemical composition of nanoparticles and catalysts were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray fluorescence spectroscopy, and energy dispersive spectroscopy. The prepared catalysts have been tested in the selective hydrogenation of 2-methyl-3-butyn-2-ol, and the results have been compared with catalysts prepared by conventional impregnation. The results indicate that bimetallic PdZn nanoparticles-based catalysts show higher selectivity than corresponding monometallic Pd/TiO2. Embedded on titania, bimetallic nanoparticles stabilized with polyvinylpyrrolidone exhibit good activity (1.1–1.8 mol MBY/mol Pd/s−1) and high selectivity to 2-methyl-3-buten-2-ol (81.5–88.9 % at 95 % conversion). The influence of the nature of the stabilizer, the stabilizer/metal molar ratio, and activation conditions on the catalytic behavior of the samples was analyzed. It is shown that the particle size does not significantly affect the catalytic properties in the range of 4.4–6.5 nm. The nature and amount of stabilizer seem to be crucial to prepare efficient catalyst.


Mesoporous titania coating Fused silica capillary PdZn nanoparticles Selective hydrogenation Alkyne alcohol Catalytic coating Sol–gel method 







Transmission electron microscopy


Energy dispersive spectroscopy


Inductively coupled plasma atomic emission spectroscopy


X-ray fluorescence spectroscopy


High resolution TEM


X-ray photoelectron spectroscopy








Thermogravimetric analyses


Differential thermal analyses



Authors are grateful to Dr. Yu. V. Patrushev for a gas-chromatographic analysis and Dr. E. Yu. Gerasimov for investigation of the catalysts by TEM. The support of this work by Russian Federal Agency of Scientific Organizations (Project V45.1.10) and Russian Foundation for Basic Research (Project N15-53-45039) is gratefully acknowledged.


  1. Anderson JA, Mellor J, Wells RPK (2009) Pd catalysed hexyne hydrogenation modified by Bi and by Pb. J Catal 261:208–216CrossRefGoogle Scholar
  2. Armbruster M, Behrens M, Cinquini F et al (2012) How to control the selectivity of palladium-based catalysts in hydrogenation reactions: the role of subsurface chemistry modification. ChemCatChem 4:1048–1063CrossRefGoogle Scholar
  3. Bonet F, Tekala-Elhsissen K, Vijaya Sarathy K (2000) Study of interaction of ethylene glycol/PVP phase on noble metal powders prepared by polyol process. Bull Mater Sci 23:165–168CrossRefGoogle Scholar
  4. Bonrath W, Medlock J, Schütz J, Wüstenberg B, Netscher T (2012) Hydrogenation in the vitamins and fine chemicals industry—an overview. In: Karame I (ed) Hydrogenation. InTech, pp 69–90. doi: 10.5772/3208
  5. Borodko Y, Habas SE, Koebel M, Yang P, Frei H, Somorjai GA (2006) Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J Phys Chem B 110:23052–23059CrossRefGoogle Scholar
  6. Borodko Y, Humphrey SM, Tilley TD, Frei H, Somorjai GA (2007) Charge–transfer interaction of poly(vinylpyrrolidone) with platinum and rhodium nanoparticles. J Phys Chem C111(17):6288–6295Google Scholar
  7. Boudart M (1984) Kinetics of heterogeneous catalytic reactions. Princeton University Press, PrincetonCrossRefGoogle Scholar
  8. Bronstein LM, Chernyshov DM, Volkov IO, Ezernitskaya MG, Valetsky PM, Matveeva VG, Sulman EM (2000) Structure and properties of bimetallic colloids formed in polystyrene-block-poly-4-vinylpyridine micelles: catalytic behavior in selective hydrogenation of dehydrolinalool. J Catal 196:302–314CrossRefGoogle Scholar
  9. Capek I (2006) Chapter 3 preparation of colloidal metal particles. In: Capek I (Ed.), nanocomposite structures and dispersions. Science and nanotechnology—fundamental principles and colloidal particles. Stud Interface Sci 23:137–223CrossRefGoogle Scholar
  10. Cherkasov N, Ibhadon AO, Rebrov EV (2015) Novel synthesis of thick wall coatings of titania supported Bi poisoned Pd catalysts and application in selective hydrogenation of acetylene alcohols in capillary microreactors. Lab Chip 15:1952CrossRefGoogle Scholar
  11. Crespo-Quesada M, Andanson J-M, Yarulin A, Lim B, Xia Y, Kiwi-Minsker L (2011a) UV–ozone cleaning of supported poly(vinylpyrrolidone)-stabilized palladium nanocubes: effect of stabilizer removal on morphology and catalytic behavior. Langmuir 27:7909–7916CrossRefGoogle Scholar
  12. Crespo-Quesada M, Dykeman RR, Laurenczy G, Dyson PJ, Kiwi-Minsker L (2011b) Supported nitrogen-modified Pd nanoparticles for the selective hydrogenation of 1-hexyne. J Catal 279(1):66–74CrossRefGoogle Scholar
  13. Crespo-Quesada M, Yarulin A, Jin M, Xia Y, Kiwi-Minsker L (2011c) Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: which sites are most active and selective? J Am Chem Soc 133:12787–12794. doi: 10.1021/ja204557m CrossRefGoogle Scholar
  14. Crespo-Quesada M, Yoon S, Jin M, Xia Y, Weidenkaff A, Kiwi-Minsker L (2014) Size and shape-controlled Pd nanocrystals on ZnO and SiO2: when the nature of the support determines the active phase. ChemCatChem 6:767–771CrossRefGoogle Scholar
  15. Datye AK, Xu Q, Kharas KC, McCarty JM (2006) Particle size distributions in heterogeneous catalysts: what do they tell us about the sintering mechanism? Catal Today 111:59–67CrossRefGoogle Scholar
  16. Descamps C, Coquelet C, Bouallou C, Richon D (2005) Solubility of hydrogen in methanol at temperatures from 248.41 to 308.20 K. Thermochim Acta 430:1–7CrossRefGoogle Scholar
  17. Dominguez-Dominguez S, Berenguer-Murcia A, Cazorla-Amoros D, Linares-Solano A (2006) Semihydrogenation of phenylacetylene catalyzed by metallic nanoparticles containing noble metals. J Catal 243:74–81CrossRefGoogle Scholar
  18. Engels V, Jefferson DA, Benaskar F, Thune PC, Berenguer-Murcia A, Johnson BFG, Wheatley AEH (2011) Nanoparticulate PdZn—pathways towards the synthetic control of nanosurface properties. Nanotechnology 22:205701-1–205701-10. doi: 10.1088/0957-4484/22/20/205701 CrossRefGoogle Scholar
  19. Evangelisti C, Panziera N, Alessio AD, Bertinetti L, Botavina M, Vitulli G (2010) New monodispersed palladium nanoparticles stabilized by poly-(N-vinyl-2-pyrrolidone): preparation, structural study and catalytic properties. J Catal 272(2):246–252CrossRefGoogle Scholar
  20. Insorn P, Kitiyanan B (2015) Selective hydrogenation of mixed C4 containing high vinyl acetylene by Mn-Pd, Ni-Pd and Ag-Pd on Al2O3 catalysts. Catal Today 256:223–230CrossRefGoogle Scholar
  21. Iwasa N, Yoshikawa M, Arai M (2002) Selective hydrogenation of acetonitrile to ethylamine using palladium-based alloy catalysts. Phys Chem Chem Phys 4:5414–5420CrossRefGoogle Scholar
  22. Kemal L, Jiang XC, Wong K, Yu AB (2008) An experiment and theoretical study of PVP-controlled gold nanoparticles. J Phys Chem C 112:15656–15664CrossRefGoogle Scholar
  23. King CJ, Hsueh L, Ma K (1965) Liquid phase diffusion of non-electrolytes at high dilution. J Chem Eng Data 10:348–350CrossRefGoogle Scholar
  24. Kiwi-Minsker L, Crespo-Quesada M (2012) Shape and size-tailored Pd nanocrystals to study the structure sensitivity of 2-methyl-3-butyn-2-ol hydrogenation: effect of the stabilizing agent. Top Catal 55:486–491CrossRefGoogle Scholar
  25. Lu P, Teranishi T, Asakura K, Miyake M, Toshima N (1999) Polymer-protected Ni/Pd bimetallic nano-clusters: preparation, characterization and catalysis for hydrogenation of nitrobenzene. J Phys Chem B 103:9673–9682CrossRefGoogle Scholar
  26. Mashkovsky IS, Baeva GN, Stakheev AYu, Vargaftik MN, Kozitsyna NYu, Moiseev II (2014) Novel Pd–Zn/C catalyst for selective alkyne hydrogenation: evidence for the formation of Pd–Zn bimetallic alloy particles. Mendeleev Commun 24:355–357CrossRefGoogle Scholar
  27. Okhlopkova L, Kerzhentsev M, Tuzikov F, Larichev Y, Ismagilov Z (2012a) Palladium–zinc catalysts on mesoporous titania prepared by colloid synthesis. II. Synthesis and characterization of PdZn/TiO2 coating on inner surface of fused silica capillary. J Nanopart Res. doi: 10.1007/s11051-012-1088-x Google Scholar
  28. Okhlopkova L, Kerzhentsev M, Tuzikov F, Larichev Y, Prosvirin I, Ismagilov Z (2012b) Palladium–zinc catalysts on mesoporous titania prepared by colloid synthesis. I. Size control synthesis of PdZn nanoclusters by a polyol method. J Nanopart Res. doi: 10.1007/s11051-012-1089-9 Google Scholar
  29. Penner S, Jenewein B, Gabasch H, Klötzer B, Wang D, Knop-Gericke A, Schlögl R, Hayek K (2006) Growth and structural stability of well-ordered PdZn alloy nanoparticles. J Catal 241:14–19CrossRefGoogle Scholar
  30. Pongthawornsakun B, Mekasuwandumrong O, Prakash S, Ehret E, Cadete FJ, Aires S, Panpranot J (2015) Effect of reduction temperature on the characteristics and catalytic properties of TiO2 supported AuPd alloy particles prepared by one-step flame spray pyrolysis in the selective hydrogenation of 1-heptyne. Appl Catal A. doi: 10.1016/j.apcata.2015.09.012 Google Scholar
  31. Protasova LN, Rebrov EV, Glazneva TS, Berenguer-Murcia A, Ismagilov ZR, Schouten JC (2010) Control of the thickness of mesoporous titania films for application in multiphase catalytic microreactors. J Catal 271:161–169CrossRefGoogle Scholar
  32. Rebrov EV, Berenguer-Murcia A, Skelton HE, Johnson BFG, Wheatley AEH, Schouten JC (2009a) Capillary microreactors wall-coated with mesoporous titania thin film catalyst supports. Lab Chip 9:485CrossRefGoogle Scholar
  33. Rebrov EV, Klinger EA, Berenguer-Murcia A, Sulman EM, Schouten JC (2009b) Selective hydrogenation of 2-methyl-3-butyne-2-ol in a wall-coated capillary microreactor with a Pd25Zn75/TiO2 catalyst. Org Process Res Dev 13:991–998CrossRefGoogle Scholar
  34. Renken A, Kiwi-Minsker L (2010) Microstructured catalytic reactor. In: Gates B, Knoezinger H, Jentoft F (eds) Advances in catalysis, vol 53. Elsevier, Inc., pp 47–122. doi: 10.1016/S0360-0564(10)53002-5
  35. Scofield JH (1976) Hartree–Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8:129–137CrossRefGoogle Scholar
  36. Semagina N, Bykov A, Sulman E, Matveeva V, Sidorov S, Dubrovina L, Valetsky P, Kiselyova O, Khokhlov A, Stein B, Bronstein L (2004) Selective dehydrolinalool hydrogenation with poly(ethylene oxide)-block-poly-2-vinylpyridine micelles filled with Pd nanoparticle. J Mol Catal A 208:273–284CrossRefGoogle Scholar
  37. Semagina N, Joannet E, Parra S, Sulman E, Renken A, Kiwi-Minsker L (2005) Palladium nanoparticles stabilized in block-copolymer micelles for highly selective 2-butyne-1,4-diol partial hydrogenation. Appl Catal A 280:141–147CrossRefGoogle Scholar
  38. Semagina N, Grasemann M, Xanthopoulos N, Renken A, Kiwi-Minsker L (2007a) Structured catalyst of Pd/ZnO on sintered metal fibers for 2-methyl-3-butyn-2-ol selective hydrogenation. J Catal 251:213–222CrossRefGoogle Scholar
  39. Semagina N, Renken A, Laub D, Kiwi-Minsker L (2007b) Synthesis of monodispersed palladium nanoparticles to study structure sensitivity of solvent-free selective hydrogenation of 2-methyl-3-butyn-2-ol. J Catal 246(2):308–314CrossRefGoogle Scholar
  40. Semagina N, Renken A, Kiwi-Minsker L (2007c) Monodispersed Pd-nanoparticles on carbon fiber fabrics as structured catalyst for selective hydrogenation. Chem Eng Sci 62:5344–5348CrossRefGoogle Scholar
  41. Shao L, Zhang W, Armbruster M, Teschner D, Girgsdies F, Zhang B, Timpe O, Friedrich M, Schlogl R, Sheng Su D (2011) Nanosizing intermetallic compounds onto carbon nanotubes: active and selective hydrogenation catalysts. Angew Chem Int Ed 50:10231–10235CrossRefGoogle Scholar
  42. Silvert P-Y, Vijayakrishnan V, Vibert P, Herrera-Urbina R, Elhsissen KT (1996) Synthesis and characterization of nanoscale Ag–Pd alloy particles. Nanostruct Mater 7:611–618CrossRefGoogle Scholar
  43. Sulman E, Bodrova Y, Matveeva V, Semagina N, Cerveny L, Kurtc V, Bronstein L, Platonova O, Valetsky P (1999) Hydrogenation of dehydrolinalool with novel catalyst derived from Pd colloids stabilized in micelle cores of polystyrene–poly-4-vinylpyridine block copolymers. Appl Catal A 176:75–81CrossRefGoogle Scholar
  44. Sulman E, Matveeva V, Doluda V, Nicoshvili L, Bronstein L, Valetsky P, Tsvetkova I (2006) Nanostructured catalysts for the synthesis of vitamin intermediate products. Top Catal 39:187–190CrossRefGoogle Scholar
  45. Sulman EM, Matveeva VG, Sulman MG, Demidenko GN, Valetsky PM, Stein B, Mates T, Bronstein LM (2009) Influence of heterogenization on catalytic behavior of mono- and bimetallic nanoparticles formed in poly(styrene)-block-poly(4-vinylpyridine) micelles. J Catal 262:150–158CrossRefGoogle Scholar
  46. Teranishi T, Miyake M (1998) Size control of palladium nanoparticles and their crystal structures. Chem Mater 10:594–600CrossRefGoogle Scholar
  47. Ternan M (1987) The diffusion of liquids in pores. Can J Chem Eng 65:244–249CrossRefGoogle Scholar
  48. Wehner PS, Tustin GC, Gustavson BL (1984) XPS study of the reduction and reoxidation of ZnO-supported palladium. J Catal 88:246–248CrossRefGoogle Scholar
  49. Weisz PB, Prater CD (1954) Interpretation of measurements in experimental catalysis. Adv Catal 6:14–196. doi: 10.1016/S0360-0564(08)60390-9 Google Scholar
  50. Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J 1:264–270CrossRefGoogle Scholar
  51. Xiong Y, Chen J, Wiley B, Xia Y (2005) Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J Am Chem Soc 127:7332–7333CrossRefGoogle Scholar
  52. Yarulin A, Yuranov I, Cardenas-Lizana F, Abdulkin P, Kiwi-Minsker L (2013) Size-effect of Pd–poly(N-vinyl-2-pyrrolidone) nanocatalysts on selective hydrogenation of alkynols with different alkyl chains. J Phys Chem C 117:13424–13434CrossRefGoogle Scholar
  53. Yarulin A, Yuranov I, Cárdenas-Lizana F, Alexander DTL, Kiwi-Minsker L (2014) How to increase the selectivity of Pd-based catalyst in alkynol hydrogenation: effect of second metal. Appl Catal A 478:186–193CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Lyudmila B. Okhlopkova
    • 1
    Email author
  • Ekaterina V. Matus
    • 1
  • Igor P. Prosvirin
    • 1
    • 2
  • Michail A. Kerzhentsev
    • 1
  • Zinfer R. Ismagilov
    • 1
    • 3
  1. 1.Boreskov Institute of CatalysisNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of Coal Chemistry and Material ScienceKemerovoRussia

Personalised recommendations