Advertisement

Electro-oxidation of methanol in alkaline conditions using Pd–Ni nanoparticles prepared from organometallic precursors and supported on carbon vulcan

  • A. Manzo-Robledo
  • Natália J. S. Costa
  • K. Philippot
  • Liane M. Rossi
  • E. Ramírez-Meneses
  • L. P. A. Guerrero-Ortega
  • S. Ezquerra-Quiroga
Brief Communication

Abstract

Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd90Ni10, Pd50Ni50, Pd10Ni90, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd2(dba)3, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod)2. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The iE profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the iE characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions’ interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation.

Keywords

Methanol oxidation Electrocatalysis Fuel cell Anode catalyst Colloidal catalyst precursor 

Notes

Acknowledgments

The authors wish to acknowledge the financial support provided by SIP and IPN-CONACyT (projects 160333 and 157613), Universidad Iberoamericana 0053 project, SNI-CONACyT, CAPES, FAPESP, and the CNRS. The authors also thank V. Collière (UPS-TEMSCAN) for TEM analysis. The research was conducted in the framework of the “French-Mexican International Laboratory (LIA) LCMMC” and “International Cooperation Program CAPES-COFECUB (Grant 695/10).”

References

  1. Amiens C, Chaudret B, Ciuculescu-Pradines D, Collière V, Fajerwerg K, Fau P, Kahn M, Maisonnat A, Soulantica K, Philippot K (2013) Organometallic approach for the synthesis of nanostructures. New J Chem 37:3374–3401CrossRefGoogle Scholar
  2. Amin RS, Abdel Hameed RM, El-Khatib KM (2014a) Microwave heated synthesis of carbon supported Pd, Ni and Pd–Ni nanoparticles for methanol oxidation in KOH solution. Appl Catal B 148–149:557–567CrossRefGoogle Scholar
  3. Amin RS, Abdel Hameed RM, El-Khatib KM, Elsayed YM (2014b) Electrocatalytic activity of nanostructured Ni and Pd–Ni on Vulcan XC-72R carbon black for methanol oxidation in alkaline medium. Int J Hydrog Energy 39:2026–2041CrossRefGoogle Scholar
  4. Antolini E (2007) Catalysts for direct ethanol fuel cells. J Powder Sources 170:1–12CrossRefGoogle Scholar
  5. Awasthi R, Anindita RN (2010) Synthesis and characterization of nano structured Pd-Ni and Pd–Ni–C composites towards electrooxidation of alcohols. Open Catal J 3:70–78CrossRefGoogle Scholar
  6. Badwal SPS, Giddey S, Kulkarni A, Goel J, Basu S (2015) Direct ethanol fuel cells for transport and stationary applications—a comprehensive review. Appl Energy 145:80–103CrossRefGoogle Scholar
  7. Bandarenka AS, Koper MTM (2013) Structural and electronic effects in heterogeneous electrocatalysis: toward a rational design of electrocatalysts. J Catal 308:11–24CrossRefGoogle Scholar
  8. Cai J, Huang Y, Guo Y (2013) Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium. Electrochim Acta 99:22–29CrossRefGoogle Scholar
  9. Chen HM, Liu R-S (2011) Architecture of metallic nanostructures: synthesis strategy and specific applications. J Phys Chem C 115:3513–3527CrossRefGoogle Scholar
  10. Cordente N, Respaud M, Senocq F, Casanove MJ, Amiens C, Chaudret B (2001) Synthesis and magnetic properties of nickel nanorods. Nano Lett 1:565–568CrossRefGoogle Scholar
  11. Costa NJS, Guerrero M, Collière V, Teixeira-Neto E, Landers R, Philippot K, Rossi LM (2014) Organometallic preparation of Ni, Pd, and NiPd nanoparticles for the design of supported nanocatalysts. ACS Catal 4:1735–1742CrossRefGoogle Scholar
  12. Demirci UB (2007) Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J Power Sources 173:11–18CrossRefGoogle Scholar
  13. Domínguez-Crespo MA, Ramírez-Meneses E, Montiel-Palma V, Torres-Huerta AM, Dorantes Rosales H (2009) Synthesis and electrochemical characterization of stabilized nickel nanoparticles. Int J Hydrog Energy 34:1664–1676CrossRefGoogle Scholar
  14. Domínguez-Crespo MA, Ramírez-Meneses E, Torres-Huerta AM, Garibay-Febles V, Philippot K (2012) Kinetics of hydrogen evolution reaction on stabilized Ni, Pt and Ni–Pt nanoparticles obtained by an organometallic approach. Int J Hydrog Energy 37:4798–4811CrossRefGoogle Scholar
  15. Durán Pachón L, Rothenberg G (2008) Transition-metal nanoparticles: synthesis, stability and the leaching issue. Appl Organometal Chem 22:288–299CrossRefGoogle Scholar
  16. Estudillo-Wong LA, Vargas-Gómez AM, Arce-Estrada EM, Manzo-Robledo A (2013) TiO2/C composite as a support for Pd-nanoparticles toward the electrocatalytic oxidation of methanol in alkaline media. Electrochim Acta 112:164–170CrossRefGoogle Scholar
  17. Guo P, Wei Z, Ye W, Qin W, Wang Q, Guo X, Lu C, Zhao XS (2012) Preparation and characterization of nanostructured Pd with high electrocatalytic activity. Colloids Surf A 395:75–81CrossRefGoogle Scholar
  18. Hansen JB (2015) Fuel processing for fuel cells and power to fuels as seen from an industrial perspective. J Catal 328:280–296CrossRefGoogle Scholar
  19. Hosseini MG, Abdolmaleki M, Ashrafpoor S (2013) Methanol electro-oxidation on a porous nanostructured Ni/Pd-Ni electrode in alkaline media. Chin J Catal 34:1712–1719CrossRefGoogle Scholar
  20. Jiang L, Hsu A, Chu D, Chen R (2010) Ethanol electro-oxidation on Pt/C and PtSn/C catalysts in alkaline and acid solutions. Int J Hydrog Energy 35:365–372CrossRefGoogle Scholar
  21. Jin C, Sun X, Chen Z, Dong R (2012) Electrocatalytic activity of PdNi/C catalysts for allyl alcohol oxidation in alkaline solution. Mater Chem Phys 135:433–437CrossRefGoogle Scholar
  22. Li R, Mao H, Zhang J, Huang T, Yu A (2013) Rapid synthesis of porous Pd and PdNi catalysts using hydrogen bubble dynamic template and their enhanced catalytic performance for methanol electrooxidation. J Power Sources 241:660–667CrossRefGoogle Scholar
  23. Li Z, Lu H, Li Q, Zhao XS, Guo P (2015) Template synthesis of palladium nanotubes and their electrocatalytic properties. Colloids Surf A 464:129–133CrossRefGoogle Scholar
  24. Lin Y-C, Chou H-L, Tsai M-C, Hwang B-J, Subramanyam L, Lee Y-C, Chen C-I (2009) Combined experimental and theoretical investigation of nanosized effects of Pt catalyst on their underlying methanol electro-oxidation activity. J Phys Chem C 113:9197–9205CrossRefGoogle Scholar
  25. Liu Z, Zhang X, Hong L (2009) Physical and electrochemical characterizations of nanostructured Pd/C and PdNi/C catalysts for methanol oxidation. Electrochem Commun 11:925–928CrossRefGoogle Scholar
  26. Lu Z, Yin Y (2012) Colloidal nanoparticle clusters: functional materials by design. Chem Soc Rev 41:6874–6887CrossRefGoogle Scholar
  27. Manzo-Robledo A, Boucher A-C, Pastor E, Alonso-Vante N (2003) Electro-oxidation of carbon monoxide and methanol on carbon-supported Pt–Sn nanoparticles: a DEMS study. Fuel Cells 2:109–116CrossRefGoogle Scholar
  28. Napoleão Geraldes A, Furtunato da Silva D, Segura Pino E, Martins da Silva JC, Brambilla de Souza RF, Hammer P, Vitório Spinacé E, Oliveira Neto A, Linardi M, Coelho dos Santos M (2013) Ethanol electro-oxidation in an alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation. Electrochim Acta 111:455–465CrossRefGoogle Scholar
  29. Niu W, Xu G (2011) Crystallographic control of noble metal nanocrystals. Nano Today 6:265–285CrossRefGoogle Scholar
  30. Park K-W, Sung Y-E (2006) Design of nanostructured electrocatalysts for direct methanol fuel cells. J Ind Eng Chem 12:165–174Google Scholar
  31. Qi Z, Geng H, Wang X, Zhao C, Ji H, Zhang C, Xu J, Zhang Z (2011) Novel nanocrystalline PdNi alloy catalyst for methanol and ethanol electro-oxidation in alkaline media. J Power Sources 196:5823–5828CrossRefGoogle Scholar
  32. Ramírez E, Jansat S, Philippot K, Lecante P, Gomez M, Masdeu-Bulto A, Chaudret B (2004) Influence of organic ligands on the stabilization of palladium nanoparticles. J Organometallic Chemistry 689:4601–4610CrossRefGoogle Scholar
  33. Ramírez E, Erades L, Philippot K, Lecante P, Chaudret B (2007) Shape control of platinum nanoparticles. Adv Funct Mater 17:2219–2228CrossRefGoogle Scholar
  34. Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a Novel family of reusable catalysts? Chem Rev 102:3757–3778CrossRefGoogle Scholar
  35. Sastry M, Swami A, Mandal S, Selvakannan PR (2005) New approaches to the synthesis of anisotropic, core–shell and hollow metal nanostructures. J Mater Chem 15:3161–3174CrossRefGoogle Scholar
  36. Shen PK, Xu C (2006) Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts. Electrochem Commun 8:184–188CrossRefGoogle Scholar
  37. Shen SY, Zhao TS, Xu JB, Li YS (2010) Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J Power Sources 195:1001–1006CrossRefGoogle Scholar
  38. Su P-C, Chen H-S, Chen T-Y, Liu C-W, Lee C-H, Lee J-F, Chan T-S, Wang K-W (2013) Enhancement of electrochemical properties of Pd/C catalysts toward ethanol oxidation reaction in alkaline solution through Ni and Au alloying. Int J Hydrog Energy 38:4474–4482CrossRefGoogle Scholar
  39. Tao AR, Habas S (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325CrossRefGoogle Scholar
  40. Tong X, Qin Y, Guo X, Moutanabbir O, Ao X, Pippel E, Zhang L, Knez M (2012) Enhanced catalytic activity for methanol electro-oxidation of uniformly dispersed nickel oxide nanoparticles-carbon nanotube hybrid materials. Small 8:3390–3395CrossRefGoogle Scholar
  41. Wei Y-C, Liu C-W, Kang W-D, Lai C-M, Tsai L-D, Wang K-W (2011) Electro-catalytic activity enhancement of Pd–Ni electrocatalysts for the ethanol electro-oxidation in alkaline medium: the promotional effect of CeO2 addition. J Electroanal Chem 660:64–70CrossRefGoogle Scholar
  42. Wu Y, Wang D, Zhao P, Niu Z, Peng Q, Li Y (2011) Monodispersed Pd–Ni nanoparticles: composition control synthesis and catalytic properties in the Miyaura − Suzuki reaction. Inorg Chem 50:2046–2048CrossRefGoogle Scholar
  43. Xu C, Cheng L, Shen P, Liu Y (2007) Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem Commun 9:997–1001CrossRefGoogle Scholar
  44. Xu CW, Tian ZQ, Shen PK, Jiang SP (2008) Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochim Acta 53:2610–2618CrossRefGoogle Scholar
  45. Yang H, Wang H, Li H, Ji S, Davids MW, Wang R (2014) Effect of stabilizers on the synthesis of palladium–nickel nanoparticles supported on carbon for ethanol oxidation in alkaline medium. J Power Sources 260:12–18CrossRefGoogle Scholar
  46. Yi Q, Sun L, Liu X, Nie H (2013) Palladium–nickel nanoparticles loaded on multi-walled carbon nanotubes modified with β-cyclodextrin for electrooxidation of alcohols. Fuel 111:88–95CrossRefGoogle Scholar
  47. Yin Z, Zheng H, Ma D, Bao X (2009) Porous palladium nanoflowers that have enhanced methanol electro-oxidation activity. J Phys Chem C 113:1001–1005CrossRefGoogle Scholar
  48. Yu EH, Krewer U, Scott K (2010) Principles and materials aspects of direct alkaline alcohol fuel cells. Energies 3:1499–1528CrossRefGoogle Scholar
  49. Zhao Y, Yang X, Tian J, Wang F, Zhan L (2010) Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media. Int J Hydrog Energy 35:3249–3257CrossRefGoogle Scholar
  50. Zhao M, Abe K, Yamaura S-I, Yamamoto Y, Asao N (2014) Fabrication of Pd–Ni–P metallic glass nanoparticles and their application as highly durable catalysts in methanol electro-oxidation. Chem Mater 26:1056–1061CrossRefGoogle Scholar
  51. Zhang X, Chan SH, Ho HK, Tan S-C, Li M, Li G, Li J, Feng Z (2015) Towards a smart energy network: the roles of fuel/electrolysis cells and technological perspectives. Int J Hydrog Energy 40:6866–6919CrossRefGoogle Scholar
  52. Zhang Z, Xin L, Sun K, Li W (2011) Pd–Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte. Int J Hydrog Energy 36:12686–12697CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • A. Manzo-Robledo
    • 1
  • Natália J. S. Costa
    • 2
    • 3
  • K. Philippot
    • 3
  • Liane M. Rossi
    • 2
  • E. Ramírez-Meneses
    • 4
  • L. P. A. Guerrero-Ortega
    • 1
  • S. Ezquerra-Quiroga
    • 4
  1. 1.Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPNUPALMMexicoMexico
  2. 2.Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  3. 3.Laboratoire de Chimie de CoordinationCNRS, LCCToulouseFrance
  4. 4.Departamento de Ingeniería y Ciencias QuímicasUniversidad IberoamericanaMexicoMexico

Personalised recommendations