Advertisement

Minimum pickup velocity (U pu) of nanoparticles in gas–solid pneumatic conveying

  • Aditya Anantharaman
  • J. Ruud van Ommen
  • Jia Wei ChewEmail author
Research Paper

Abstract

This paper is the first systematic study of the pneumatic conveying of nanoparticles. The minimum pickup velocity, U pu, of six nanoparticle species of different materials [i.e., silicon dioxide (SiO2), aluminum oxide (Al2O3), and titanium dioxide (TiO2)] and surfaces (i.e., apolar and polar) was determined by the weight loss method. Results show that (1) due to relative lack of hydrogen bonding, apolar nanoparticles had higher mass loss values at the same velocities, mass loss curves with accentuated S-shaped profiles, and lower U pu values, (2) among the three species, SiO2, which has the lowest Hamaker coefficient, exhibited the greatest discrepancy between apolar and polar surfaces with respect to both mass loss curves and U pu values, (3) U mf,polar/U mf,apolar was between 1 and 3.5 times that of U pu,polar/U pu,apolar due to greater extents of hydrogen bonding associated with U mf, (4) U pu values were at least an order-of-magnitude lower than that expected from the well-acknowledged U pu correlation (Kalman et al., Powder Technol 160:103–113, 2005) due to agglomeration, (5) although nanoparticles should be categorized as Zone III (Kalman et al. 2005) (or Geldart group C, Powder Technol 7:285–292, 1973), the nanoparticles, and primary and complex agglomerates agreed more with the Zone I (or Geldart group B) correlation.

Keywords

Minimum pickup velocity Gas–solid pneumatic conveying Nanoparticle agglomerate Polarity Hydrogen bond Inter-particle cohesion Two-phase flow Critical velocity 

Notes

Acknowledgments

The authors thank the financial support from the National Research Foundation (NRF), Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) Program (M4098010). We also acknowledge funding support from Singapore’s Ministry of Education Academic Research Fund Tier 1 (M4011437).

References

  1. Anantharaman A, Wu X, Hadinoto K, Chew JW (2015) Impact of continuous particle size distribution width and particle sphericity on minimum pickup velocity in gas–solid pneumatic conveying. Chem Eng Sci 130:92–100. doi: 10.1016/j.ces.2015.03.022 CrossRefGoogle Scholar
  2. Cabrejos FJ, Klinzing GE (1992) Incipient motion of solid particles in horizontal pneumatic conveying. Powder Technol 72:51–61. doi: 10.1016/S0032-5910(92)85021-M CrossRefGoogle Scholar
  3. Cabrejos FJ, Klinzing GE (1994) Pickup and saltation mechanisms of solid particles in horizontal pneumatic transport. Powder Technol 79:173–186. doi: 10.1016/0032-5910(94)02815-X CrossRefGoogle Scholar
  4. de Martín L, van Ommen JR (2013) A model to estimate the size of nanoparticle agglomerates in gas–solid fluidized beds. J Nanopart Res. doi: 10.1007/s11051-013-2055-x Google Scholar
  5. de Martín L, Sánchez-Prieto J, Hernández-Jiménez F, van Ommen JR (2013) A settling tube to determine the terminal velocity and size distribution of fluidized nanoparticle agglomerates. J Nanopart Res. doi: 10.1007/s11051-013-2183-3 Google Scholar
  6. de Martin L, Bouwman WG, van Ommen JR (2014) Multidimensional nature of fluidized nanoparticle agglomerates. Langmuir 30:12696–12702. doi: 10.1021/la502987e CrossRefGoogle Scholar
  7. de Martín L, Fabre A, van Ommen JR (2014) The fractal scaling of fluidized nanoparticle agglomerates. Chem Eng Sci 112:79–86. doi: 10.1016/j.ces.2014.03.024 CrossRefGoogle Scholar
  8. Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS (2001) XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17:2664–2669. doi: 10.1021/la0015213 CrossRefGoogle Scholar
  9. Gandhimathi C, Venugopal JR, Sundarrajan S, Sridhar R, Tay SSW, Ramakrishna S, Kumar SD (2015) Breathable medicine: pulmonary mode of drug delivery. J Nanosci Nanotechnol 15:2591–2604. doi: 10.1166/jnn.2015.10341 CrossRefGoogle Scholar
  10. Geldart D (1973) Types of gas fluidization. Powder Technol 7:285–292. doi: 10.1016/0032-5910(73)80037-3 CrossRefGoogle Scholar
  11. Gomes LM, Mesquita ALA (2013) Effect of particle size and sphericity on the pickup velocity in horizontal pneumatic conveying. Chem Eng Sci 104:780–789. doi: 10.1016/j.ces.2013.08.055 CrossRefGoogle Scholar
  12. Gomes LM, Mesquita ALA (2014) On the prediction of pickup and saltation velocities in pneumatic conveying. Braz J Chem Eng 31:35–46. doi: 10.1590/S0104-66322014000100005 CrossRefGoogle Scholar
  13. Goulas A, van Ommen JR (2014) Scalable production of nanostructured particles using atomic layer deposition. KONA Powder Part J 31:234–246. doi: 10.14356/kona.2014013 CrossRefGoogle Scholar
  14. Goy SP, Chew JW, Hadinoto K (2011) Effects of binary particle size distribution on minimum pick-up velocity in pneumatic conveying. Powder Technol 208:166–174. doi: 10.1016/j.powtec.2010.12.015 CrossRefGoogle Scholar
  15. Halow JS (1973) Incipient rolling, sliding and suspension of particles in horizontal and inclined turbulent flow. Chem Eng Sci 28:1–12. doi: 10.1016/0009-2509(73)85080-8 CrossRefGoogle Scholar
  16. Hamaker HC (1937) The London—Van Der Waals attraction between spherical particles. Physica 4:1058–1072. doi: 10.1016/S0031-8914(37)80203-7 CrossRefGoogle Scholar
  17. Hayden KS, Park K, Curtis JS (2003) Effect of particle characteristics on particle pickup velocity. Powder Technol 131:7–14. doi: 10.1016/s0032-5910(02)00135-3 CrossRefGoogle Scholar
  18. Kalman H, Satran A, Meir D, Rabinovich E (2005) Pickup (critical) velocity of particles. Powder Technol 160:103–113. doi: 10.1016/j.powtec.2005.08.009 CrossRefGoogle Scholar
  19. King DM, Liang XH, Weimer AW (2012) Functionalization of fine particles using atomic and molecular layer deposition. Powder Technol 221:13–25. doi: 10.1016/j.powtec.2011.12.020 CrossRefGoogle Scholar
  20. Kuhlbusch TAJ, Asbach C, Fissan H, Gohler D, Stintz M (2011) Nanoparticle exposure at nanotechnology workplaces: a review. Part Fibre Toxicol. doi: 10.1186/1743-8977-8-22 Google Scholar
  21. Kumar P, Ketzel M, Vardoulakis S, Pirjola L, Britter R (2011) Dynamics and dispersion modelling of nanoparticles from road traffic in the urban atmospheric environment—a review. J Aerosol Sci 42:580–603. doi: 10.1016/j.jaerosci.2011.06.001 CrossRefGoogle Scholar
  22. Nakamura H, Watano S (2008) Fundamental particle fluidization behavior and handling of nano-particles in a rotating fluidized bed. Powder Technol 183:324–332. doi: 10.1016/j.powtec.2008.01.007 CrossRefGoogle Scholar
  23. Nam CH, Pfeffer R, Dave RN, Sundaresan S (2004) Aerated vibrofluidization of silica nanoparticles. AIChE J 50:1776–1785. doi: 10.1002/aic.10237 CrossRefGoogle Scholar
  24. Niu J, Rasmussen PE, Hassan NM, Vincent R (2010) Concentration distribution and bioaccessibility of trace elements in nano and fine urban airborne particulate matter: influence of particle size. Water Air Soil Pollut 213:211–225. doi: 10.1007/s11270-010-0379-z CrossRefGoogle Scholar
  25. Quintanilla MAS, Valverde JM, Espin MJ, Castellanos A (2012) Electrofluidization of silica nanoparticle agglomerates. Ind Eng Chem Res 51:531–538. doi: 10.1021/ie200538v CrossRefGoogle Scholar
  26. Rabinovich E, Kalman H (2008) Generalized master curve for threshold superficial velocities in particle–fluid systems. Powder Technol 183:304–313. doi: 10.1016/j.powtec.2007.07.030 CrossRefGoogle Scholar
  27. Schilde C, Nolte H, Arlt C, Kwade A (2010) Effect of fluid–particle-interactions on dispersing nano-particles in epoxy resins using stirred-media-mills and three-roll-mills. Compos Sci Technol 70:657–663. doi: 10.1016/j.compscitech.2009.12.021 CrossRefGoogle Scholar
  28. Shabeer A, Chandrashekhara K, Schuman T (2007) Synthesis and characterization of soy-based nanocomposites. J Compos Mater 41:1825–1849. doi: 10.1177/0021998307069896 CrossRefGoogle Scholar
  29. Sham JOH, Zhang Y, Finlay WH, Roa WH, Löbenberg R (2004) Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int J Pharm 269:457–467. doi: 10.1016/j.ijpharm.2003.09.041 CrossRefGoogle Scholar
  30. Stahlmecke B, Wagener S, Asbach C, Kaminski H, Fissan H, Kuhlbusch TAJ (2009) Investigation of airborne nanopowder agglomerate stability in an orifice under various differential pressure conditions. J Nanopart Res 11:1625–1635. doi: 10.1007/s11051-009-9731-x CrossRefGoogle Scholar
  31. Tahmasebpoor M, de Martin L, Talebi M, Mostoufi N, van Ommen JR (2013) The role of the hydrogen bond in dense nanoparticle–gas suspensions. Phys Chem Chem Phys 15:5788–5793. doi: 10.1039/c3cp43687j CrossRefGoogle Scholar
  32. Tay JYT, Chew JW, Hadinoto K (2012) Analyzing the minimum entrainment velocity of ternary particle mixtures in horizontal pneumatic transport. Ind Eng Chem Res 51:5626–5632. doi: 10.1021/ie3000387 CrossRefGoogle Scholar
  33. Valverde JM, Castellanos A (2007) Fluidization, bubbling and jamming of nanoparticle agglomerates. Chem Eng Sci 62:6947–6956. doi: 10.1016/j.ces.2007.08.050 CrossRefGoogle Scholar
  34. Valverde JM, Castellanos A (2008) Fluidization of nanoparticles: a simple equation for estimating the size of agglomerates. Chem Eng J 140:296–304. doi: 10.1016/j.cej.2007.09.032 CrossRefGoogle Scholar
  35. Valverde JM, Quintanilla MAS, Espin MJ, Castellanos A (2008) Nanofluidization electrostatics. Phys Rev E. doi: 10.1103/Physreve.77.031301 Google Scholar
  36. van Ommen JR, Valverde JM, Pfeffer R (2012) Fluidization of nanopowders: a review. J Nanopart Res. doi: 10.1007/S11051-012-0737-4 Google Scholar
  37. van Ommen JR, Kooijman D, de Niet M, Talebi M, Goulas A (2015) Continuous production of nanostructured particles using spatial atomic layer deposition. J Vac Sci Technol A 33:021513. doi: 10.1116/1.4905725
  38. Yao W, Guangsheng G, Fei W, Jun W (2002) Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technol 124:152–159. doi: 10.1016/S0032-5910(01)00491-0 CrossRefGoogle Scholar
  39. Zenz FA (1964) Conveyability of particles of mixed particle size. Ind Eng Chem Fundam 3:65–75. doi: 10.1021/i160009a012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Department of Chemical EngineeringDelft University of TechnologyDelftThe Netherlands
  3. 3.Singapore Membrane Technology Center, Nanyang Environment and Water Research InstituteNanyang Technological UniversitySingaporeSingapore

Personalised recommendations