Potential of two-line atomic fluorescence for temperature imaging in turbulent indium-oxide-producing flames

  • Bettina Münsterjohann
  • Franz J. T. Huber
  • Tobias C. Klima
  • Sandra Holfelder
  • Sascha R. Engel
  • Joseph D. Miller
  • Terrence R. Meyer
  • Stefan Will
Research Paper

Abstract

The applicability of two-line atomic fluorescence (TLAF) for temperature imaging in an indium-based flame spray pyrolysis (FSP) process is demonstrated using a single tunable optical parametric oscillator (OPO) to generate the required excitation wavelengths consecutively. Single-shot images of the detected fluorescence signals demonstrate that the signal levels in the flame are suitable for evaluation of temperature and verify the capability and potential of the measurement technique directly during particle formation without additional indium seeding. Qualitative averaged two-dimensional temperature distributions in the FSP flame are presented, showing the influence of varying sheath gas flow rates on the resulting temperature distribution. With the addition of a second OPO and detection system, the two fluorescence signals acquired consecutively in this work could be obtained simultaneously and enable spatio-temporally resolved single-shot temperature measurements in flame synthesis processes of indium-containing nanoparticles.

Keywords

Flame spray pyrolysis Indium(III)-oxide nanoparticles Two-line atomic fluorescence Temperature measurement 

References

  1. Arabi-Katbi OI, Pratsinis SE, Morrison PW Jr, Megaridis CM (2001) Monitoring the flame synthesis of TiO2 particles by in-situ FTIR spectroscopy and thermophoretic sampling. Combust Flame 124:560–572CrossRefGoogle Scholar
  2. Bessler WG, Hildenbrand F, Schulz C (2001) Two-line laser-induced fluorescence imaging of vibrational temperatures in a NO-seeded flame. Appl Opt 40:748–756CrossRefGoogle Scholar
  3. Bohlin A, Kliewer CJ (2013) Communication: two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): simultaneous planar imaging and multiplex spectroscopy in a single laser shot. J Chem Phys 138:221101CrossRefGoogle Scholar
  4. Camenzind A, Strobel R, Pratsinis SE (2005) Cubic or monoclinic Y2O3:Eu3+ nanoparticles by one step flame spray pyrolysis. Chem Phys Lett 415:193–197CrossRefGoogle Scholar
  5. Daily JW (1997) Laser induced fluorescence spectroscopy in flames. Prog Energy Combust Sci 23:133–199CrossRefGoogle Scholar
  6. Dec JE, Keller JO (1986) High speed thermometry using two-line atomic fluorescence. Symp (Int) Combust 21:1737–1745CrossRefGoogle Scholar
  7. Engel SR, Koegler AF, Gao Y, Kilian D, Voigt M, Seeger T, Peukert W, Leipertz A (2012) Gas phase temperature measurements in the liquid and particle regime of a flame spray pyrolysis process using O2-based pure rotational coherent anti-Stokes Raman scattering. Appl Opt 51:6063–6075CrossRefGoogle Scholar
  8. Fix A, Haub JG, Johnson MJ, Schröer T, Wallenstein R, Orr BJ (1993) Tunable beta-barium borate optical parametric oscillator: operating characteristics with and without injection seeding. J Opt Soc Am B 10:1744–1750CrossRefGoogle Scholar
  9. Gopchandran KG, Joseph B, Abraham JT, Koshy P, Vaidyan VK (1997) The preparation of transparent electrically conducting indium oxide films by reactive vacuum evaporation. Vacuum 48:547–550CrossRefGoogle Scholar
  10. Han D, Mungal MG (2001) Direct measurement of entrainment in reacting/nonreacting turbulent jets. Combust Flame 124:370–386CrossRefGoogle Scholar
  11. Hartlieb AT, Atakan B, Kohse-Höinghaus K (2000) Temperature measurement in fuel-rich non-sooting low-pressure hydrocarbon flames. Appl Phys B 70:435–445CrossRefGoogle Scholar
  12. Haudiquert M, Cessou A, Stepowski D, Coppalle A (1997) OH and soot concentration measurements in a high-temperature laminar diffusion flame. Combust Flame 111:338–349CrossRefGoogle Scholar
  13. Heine MC, Mädler L, Jossen R, Pratsinis SE (2006) Direct measurement of entrainment during nanoparticle synthesis in spray flames. Combust Flame 144:809–820CrossRefGoogle Scholar
  14. Hult J, Burns IS, Kaminski CF (2005) Two-line atomic fluorescence flame thermometry using diode lasers. Proc Combust Inst 30:1535–1543CrossRefGoogle Scholar
  15. Jang HD, Seong CM, Chang HK, Kim HC (2006) Synthesis and characterization of indium-tin oxide (ITO) nanoparticles. Curr Appl Phys 6:1044–1047CrossRefGoogle Scholar
  16. Joklik RG, Horvath JJ, Semerjian HG (1991) Temperature measurements in flames using thermally assisted laser-induced fluorescence of Ga. Appl Opt 30:1497–1504CrossRefGoogle Scholar
  17. Kammler HK, Jossen R, Morrison PW Jr, Pratsinis SE, Beaucage G (2003) The effect of external electric fields during flame synthesis of titania. Powder Technol 135–136:310–320CrossRefGoogle Scholar
  18. Kammler HK, Mädler L, Pratsinis SE (2001) Flame synthesis of nanoparticles. Chem Eng Technol 24:583–596CrossRefGoogle Scholar
  19. Kilian D, Engel S, Borsdorf B, Gao Y, Kögler AF, Kobler S, Seeger T, Will S, Leipertz A, Peukert W (2014) Spatially resolved flame zone classification of a flame spray nanoparticle synthesis process by combining different optical techniques. J Aerosol Sci 69:82–97CrossRefGoogle Scholar
  20. Kohse-Höinghaus K (1994) Laser techniques for the quantitative detection of reactive intermediates in combustion systems. Prog Energy Combust Sci 20:203–279CrossRefGoogle Scholar
  21. Kronemayer H, Ifeacho P, Hecht C, Dreier T, Wiggers H, Schulz C (2007) Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry. Appl Phys B 88:373–377CrossRefGoogle Scholar
  22. Liu X, Smith ME, Tse SD (2010) In situ Raman characterization of nanoparticle aerosols during flame synthesis. Appl Phys B 100:643–653CrossRefGoogle Scholar
  23. Mädler L, Kammler HK, Mueller R, Pratsinis SE (2002) Controlled synthesis of nanostructured particles by flame spray pyrolysis. J Aerosol Sci 33:369–389CrossRefGoogle Scholar
  24. Medwell PR, Chan QN, Kalt PAM, Alwahabi ZT, Dally BB, Nathan GJ (2009) Development of temperature imaging using two-line atomic fluorescence. Appl Opt 48:1237–1248CrossRefGoogle Scholar
  25. Miller JD, Engel SR, Meyer TR, Seeger T, Leipertz A (2011) High-speed CH planar laser-induced fluorescence imaging using a multimode-pumped optical parametric oscillator. Opt Lett 36:3927–3929CrossRefGoogle Scholar
  26. Miller JD, Engel SR, Tröger JW, Meyer TR, Seeger T, Leipertz A (2012) Characterization of a CH planar laser-induced fluorescence imaging system using a kHz-rate multimode-pumped optical parametric oscillator. Appl Opt 51:2589–2600CrossRefGoogle Scholar
  27. Müller D, Pagel R, Burkert A, Wagner V, Paa W (2014) Two-dimensional temperature measurements in particle loaded technical flames by filtered Rayleigh scattering. Appl Opt 53:1750–1758CrossRefGoogle Scholar
  28. Müller R, Jossen R, Kammler HK, Pratsinis SE, Akhtar MK (2004) Growth of zirconia particles made by flame spray pyrolysis. AIChE J 50:3085–3094CrossRefGoogle Scholar
  29. Murali A, Barve A, Leppert VJ, Risbud SH, Kennedy IM, Lee HWH (2001) Synthesis and characterization of indium oxide nanoparticles. Nano Lett 1:287–289CrossRefGoogle Scholar
  30. Nygren J, Engström J, Walewski J, Kaminski CF, Aldén M (2001) Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments. Meas Sci Technol 12:1294CrossRefGoogle Scholar
  31. Rasbach U, Wang J, dela Torre R, Leung V, Klöter B, Meschede D, Varzhapetyan T, Sarkisyan D (2004) One- and two-color laser spectroscopy of indium vapor in an all-sapphire cell. Phys Rev A 70:033810CrossRefGoogle Scholar
  32. Roy S, Gord JR, Patnaik AK (2010) Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows. Prog Energy Combust Sci 36:280–306CrossRefGoogle Scholar
  33. Solomon PR, Best PE (1991) Fourier transform infrared emission/transmission spectroscopy in flames. In: Chigier N (ed) Combustion measurements, vol 1. Hemisphere Publishing Corporation, New York, pp 385–444Google Scholar
  34. Stricker WP (2002) Measurement of temperature in laboratory flames and particle devices. In: Kohse-Höinghaus K, Jeffries JB (eds) Combustion applied diagnostics. Taylor and Francis, New York, pp 155–193Google Scholar
  35. Strobel R, Pratsinis SE (2007) Flame aerosol synthesis of smart nanostructured materials. J Mater Chem 17:4743–4756CrossRefGoogle Scholar
  36. Teoh WY, Amal R, Madler L (2010) Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2:1324–1347CrossRefGoogle Scholar
  37. Tricoli A, Elmøe TD (2012) Flame spray pyrolysis synthesis and aerosol deposition of nanoparticle films. AIChE J 58:3578–3588CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Bettina Münsterjohann
    • 1
    • 2
    • 3
  • Franz J. T. Huber
    • 1
    • 2
    • 3
  • Tobias C. Klima
    • 1
    • 2
  • Sandra Holfelder
    • 1
    • 2
    • 3
  • Sascha R. Engel
    • 1
    • 2
    • 3
  • Joseph D. Miller
    • 4
  • Terrence R. Meyer
    • 2
    • 5
  • Stefan Will
    • 1
    • 2
    • 3
  1. 1.Lehrstuhl für Technische Thermodynamik (LTT)Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  3. 3.Cluster of Excellence Engineering of Advanced Materials (EAM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  4. 4.Air Force Research LaboratoryAerospace Systems DirectorateWright-Patterson AFBUSA
  5. 5.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations