Biophysical response of living cells to boron nitride nanoparticles: uptake mechanism and bio-mechanical characterization

  • Md. Alim Iftekhar Rasel
  • Tong Li
  • Trung Dung Nguyen
  • Sanjleena Singh
  • Yinghong Zhou
  • Yin Xiao
  • YuanTong Gu
Research Paper


Boron nitride nanomaterials have attracted significant interest due to their superior chemical and physical properties. Despite these novel properties, investigation on the interaction between boron nitride nanoparticle (BN NP) and living systems has been limited. In this study, BN NP (100–250 nm) is assessed as a promising biomaterial for medical applications. The toxicity of BN NP is evaluated by assessing the cells behaviours both biologically (MTT assay, ROS detection etc.) and physically (atomic force microscopy). The uptake mechanism of BN NP is studied by analysing the alternations in cellular morphology based on cell imaging techniques. The results demonstrate in vitro cytocompatibility of BN NP with immense potential for use as an effective nanoparticle for various bio-medical applications.


Boron nitride Nanoparticles Biomechanics Cellular uptake mechanism Cytotoxicity Atomic force microscopy Drug delivery vehicle 



This research was funded by ARC Future Fellowship project (No. FT100100172), ARC Discovery Project: DP150100828 and QUT Postgraduate Research Award (QUTPRA). This work was performed in part at the central analytical and research facility (CARF) and Institute of Health and Biomedical Innovation (IHBI, QUT). The authors gratefully acknowledge Mr. Arixin Bo for his assistance in XRD of BN NP. The authors also acknowledge Miss Saba Farnaghi for her help with ROS production study.


  1. Boulanger L, Andriot B, Cauchetier M, Willaime F (1995) Concentric shelled and plate-like graphitic boron nitride nanoparticles produced by CO2 laser pyrolysis. Chem Phys Lett 234:227–232. doi: 10.1016/0009-2614(95)00008-R CrossRefGoogle Scholar
  2. Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A, Bertozzi CR (2009) Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc 131:890–891CrossRefGoogle Scholar
  3. Ciofani G, Raffa V, Menciassi A, Cuschieri A (2008) Cytocompatibility, interactions, and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol Bioeng 101:850–858CrossRefGoogle Scholar
  4. Ciofani G et al (2014) Cytocompatibility evaluation of gum Arabic-coated ultra-pure boron nitride nanotubes on human cells. Nanomedicine 9:773–788CrossRefGoogle Scholar
  5. Coles N, Glasson D, Jayaweera S (1969) Formation and reactivity of nitrides. III. Boron, aluminium and silicon nitrides. J Appl Chem 19:178–181CrossRefGoogle Scholar
  6. Colognato R, Park M, Wick P, De Jong WH (2012) Interactions with the human body. In: Adverse effects of engineered nanomaterials: exposure, toxicology and impact on human health. Elsevier Inc, OxfordGoogle Scholar
  7. Colombo P (2010) Polymer derived ceramics: from nano-structure to applications. DEStech Publications Inc, LancasterCrossRefGoogle Scholar
  8. Darling E, Zauscher S, Guilak F (2006) Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthr Cartil 14:571–579CrossRefGoogle Scholar
  9. De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20:4225–4241CrossRefGoogle Scholar
  10. Del Turco S et al (2013) Cytocompatibility evaluation of glycol-chitosan coated boron nitride nanotubes in human endothelial cells. Colloids Surf B 111:142–149CrossRefGoogle Scholar
  11. Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82:2798–2810CrossRefGoogle Scholar
  12. Dutta D, Donaldson JG (2012) Search for inhibitors of endocytosis. Cell Logist 2:203–208. doi: 10.4161/cl.23967 CrossRefGoogle Scholar
  13. Erisken C, Kalyon DM, Wang H (2008) Functionally graded electrospun polycaprolactone and β-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 29:4065–4073. doi: 10.1016/j.biomaterials.2008.06.022 CrossRefGoogle Scholar
  14. Faria EC, Ma N, Gazi E, Gardner P, Brown M, Clarke NW, Snook RD (2008) Measurement of elastic properties of prostate cancer cells using AFM. Analyst 133:1498–1500CrossRefGoogle Scholar
  15. Gao J, Xu B (2009) Applications of nanomaterials inside cells. Nano Today 4:37–51. doi: 10.1016/j.nantod.2008.10.009 CrossRefGoogle Scholar
  16. Gupta AK, Gupta M, Yarwood SJ, Curtis AS (2004) Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. J Controlled Release 95:197–207CrossRefGoogle Scholar
  17. Herre J et al (2004) Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104:4038–4045. doi: 10.1182/blood-2004-03-1140 CrossRefGoogle Scholar
  18. Horvath L et al (2011) In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS nano 5:3800–3810CrossRefGoogle Scholar
  19. Hussain SM et al (2009) Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater 21:1549–1559CrossRefGoogle Scholar
  20. Iversen T-G, Skotland T, Sandvig K (2011) Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6:176–185CrossRefGoogle Scholar
  21. Jin S, Ye K (2007) Nanoparticle-mediated drug delivery and gene therapy. Biotechnol Prog 23:32–41. doi: 10.1021/bp060348j CrossRefGoogle Scholar
  22. Joni IM, Balgis R, Ogi T, Iwaki T, Okuyama K (2011) Surface functionalization for dispersing and stabilizing hexagonal boron nitride nanoparticle by bead milling. Colloids Surf A 388:49–58. doi: 10.1016/j.colsurfa.2011.08.007 CrossRefGoogle Scholar
  23. Ladjal H, Hanus JL, Pillarisetti A, Keefer C, Ferreira A, Desai JP Atomic force microscopy-based single-cell indentation: experimentation and finite element simulation. In: Intelligent robots and systems, 2009. IROS 2009. IEEE/RSJ International Conference on, 10–15 Oct. 2009, pp 1326–1332. doi: 10.1109/IROS.2009.5354351
  24. Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:5845–5857CrossRefGoogle Scholar
  25. Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C (2013) Nanoparticle Adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135:1438–1444. doi: 10.1021/ja309812z CrossRefGoogle Scholar
  26. Lian G, Zhang X, Zhu L, Tan M, Cui D, Wang Q (2010) A facile solid state reaction route towards nearly monodisperse hexagonal boron nitride nanoparticles. J Mater Chem 20:3736–3742. doi: 10.1039/B920881J CrossRefGoogle Scholar
  27. Liang C, Joseph MM, James CML, Hao L (2011) The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22:105708CrossRefGoogle Scholar
  28. Lin DC, Dimitriadis EK, Horkay F (2007) Robust strategies for automated AFM force curve analysis—I. Non-adhesive indentation of soft, inhomogeneous materials. J Biomech Eng 129:430–440CrossRefGoogle Scholar
  29. Lin L, Li Z, Zheng Y, Wei K (2009) Synthesis and application in the CO oxidation conversion reaction of hexagonal boron nitride with high surface area. J Am Ceram Soc 92:1347–1349CrossRefGoogle Scholar
  30. Maye MM, Han L, Kariuki NN, Ly NK, Chan W-B, Luo J, Zhong C-J (2003) Gold and alloy nanoparticles in solution and thin film assembly: spectrophotometric determination of molar absorptivity. Anal Chim Acta 496:17–27CrossRefGoogle Scholar
  31. Mosleh M, Atnafu ND, Belk JH, Nobles OM (2009) Modification of sheet metal forming fluids with dispersed nanoparticles for improved lubrication. Wear 267:1220–1225. doi: 10.1016/j.wear.2008.12.074 CrossRefGoogle Scholar
  32. Nativo P, Prior IA, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2:1639–1644. doi: 10.1021/nn800330a CrossRefGoogle Scholar
  33. Nguyen TD, Gu Y (2014a) Determination of strain-rate-dependent mechanical behavior of living and fixed osteocytes and chondrocytes using atomic force microscopy and inverse finite element analysis. J Biomech Eng 136:101004CrossRefGoogle Scholar
  34. Nguyen TD, Gu Y (2014b) Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes. Appl Phys Lett 104:183701. doi: 10.1063/1.4876056 CrossRefGoogle Scholar
  35. Paine RT, Narula CK (1990) Synthetic routes to boron nitride. Chem Rev 90:73–91CrossRefGoogle Scholar
  36. Pauksch L, Hartmann S, Rohnke M, Szalay G, Alt V, Schnettler R, Lips KS (2014) Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater 10:439–449. doi: 10.1016/j.actbio.2013.09.037 CrossRefGoogle Scholar
  37. Podobeda L, Tsapuk A, Buravov A (1976) Oxidation of boron nitride under nonisothermal conditions. Sov Powder Metall Met Ceram 15:696–698CrossRefGoogle Scholar
  38. Raidongia K, Gomathi A, Rao CNR (2010) Synthesis and characterization of nanoparticles, nanotubes, nanopans, and graphene-like structures of boron nitride. Isr J Chem 50:399–404. doi: 10.1002/ijch.201000047 CrossRefGoogle Scholar
  39. Ricotti L et al (2013) Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels. PloS One 8:e71707CrossRefGoogle Scholar
  40. Ricotti L et al (2014) Boron nitride nanotube-mediated stimulation modulates F/G-actin ratio and mechanical properties of human dermal fibroblasts. J Nanopart Res 16:1–14CrossRefGoogle Scholar
  41. Salles V, Bernard S, Li J, Brioude A, Chehaidi S, Foucaud S, Miele P (2009) Design of highly dense boron nitride by the combination of spray-pyrolysis of borazine and additive-free sintering of derived ultrafine powders. Chem Mater 21:2920–2929CrossRefGoogle Scholar
  42. Salles V, Bernard S, Chiriac R, Miele P (2012) Structural and thermal properties of boron nitride nanoparticles. J Eur Ceram Soc 32:1867–1871CrossRefGoogle Scholar
  43. Shi X, Wang S, Yang H, Duan X, Dong X (2008) Fabrication and characterization of hexagonal boron nitride powder by spray drying and calcining–nitriding technology. J Solid State Chem 181:2274–2278. doi: 10.1016/j.jssc.2008.05.029 CrossRefGoogle Scholar
  44. Shi Z, Huang X, Cai Y, Tang R, Yang D (2009) Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater 5:338–345. doi: 10.1016/j.actbio.2008.07.023 CrossRefGoogle Scholar
  45. Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48:416–427. doi: 10.1016/j.ejps.2012.12.006 CrossRefGoogle Scholar
  46. Stevenson BR, Begg DA (1994) Concentration-dependent effects of cytochalasin D on tight junctions and actin filaments in MDCK epithelial cells. J Cell Sci 107:367–375Google Scholar
  47. Tang C, Bando Y, Huang Y, Zhi C, Golberg D (2008) Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles. Adv Funct Mater 18:3653–3661CrossRefGoogle Scholar
  48. Trickey WR, Lee GM, Guilak F (2000) Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J Orthop Res 18:891–898CrossRefGoogle Scholar
  49. Unciti-Broceta JD, Cano-Cortés V, Altea-Manzano P, Pernagallo S, Díaz-Mochón JJ, Sánchez-Martín RM (2015) Number of nanoparticles per cell through a spectrophotometric method—a key parameter to assess nanoparticle-based cellular assays. Sci Rep 5:10091CrossRefGoogle Scholar
  50. Wood GL, Janik JF, Visi MZ, Schubert DM, Paine RT (2005) New borate precursors for boron nitride powder synthesis. Chem Mater 17:1855–1859. doi: 10.1021/cm048255p CrossRefGoogle Scholar
  51. Wu JCS, Lin Z-A, Pan J-W, Rei M-H (2001) A novel boron nitride supported Pt catalyst for VOC incineration. Appl Catal A 219:117–124. doi: 10.1016/S0926-860X(01)00673-1 CrossRefGoogle Scholar
  52. Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322. doi: 10.1016/j.biomaterials.2008.07.038 CrossRefGoogle Scholar
  53. Zhou E, Lim C, Quek S (2005) Finite element simulation of the micropipette aspiration of a living cell undergoing large viscoelastic deformation. Mech Adv Mater Struct 12:501–512CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Md. Alim Iftekhar Rasel
    • 1
  • Tong Li
    • 1
  • Trung Dung Nguyen
    • 1
  • Sanjleena Singh
    • 1
  • Yinghong Zhou
    • 2
  • Yin Xiao
    • 2
  • YuanTong Gu
    • 1
  1. 1.School of Chemistry, Physics and Mechanical EngineeringQueensland University of Technology (QUT)BrisbaneAustralia
  2. 2.Institute of Health and Biomedical InnovationQueensland University of Technology (QUT)BrisbaneAustralia

Personalised recommendations