Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation

  • Mariela Flores-Castañeda
  • Alejandro L. Vega-Jiménez
  • Argelia Almaguer-Flores
  • Enrique Camps
  • Mario Pérez
  • Phaedra Silva-Bermudez
  • Edgardo Berea
  • Sandra E. Rodil
Research Paper


The antimicrobial properties of bismuth subsalicylate (BSS) nanoparticles against four opportunistic pathogens; E. coli, P. aeruginosa, S. aureus, and S. epidermidis were determined. BSS nanoparticles were synthesized by pulse laser ablation of a solid target in distilled water under different conditions. The nanoparticles were characterized using high-resolution transmission electron microscopy and absorption spectra and small angle X-ray scattering. The analysis shows that the colloids maintained the BSS structure and presented average particle size between 20 and 60 nm, while the concentration ranges from 95 to 195 mg/L. The antibacterial effect was reported as the inhibition ratio of the bacterial growth after 24 h and the cell viability was measured using the XTT assay. The results showed that the inhibition ratio of E. coli and S. epidermidis was dependant on the NPs size and/or concentration, meanwhile P. aeruginosa and S. aureus were more sensitive to the BSS nanoparticles independently of both the size and the concentration. In general, the BSS colloids with average particle size of 20 nm were the most effective, attaining inhibition ratios >80 %, similar or larger than those obtained with the antibiotic used as control. The results suggest that the BSS colloids could be used as effective antibacterial agents with potential applications in the medical area.


Bismuth subsalicylate Nanoparticles Laser ablation Antimicrobial effect Health effects 



The authors thank María de Jesús Salinas Nájera and Hermilo Zarco for their technical assistance. Supported by DGAPA-PAPIIT #IN18814, #IN118914, and CONACYT 152995 grants.


  1. Adams CP, Walker KA, Obare SO, Docherty KM (2014) Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS ONE 9:e85981. doi: 10.1371/journal.pone.0085981 CrossRefGoogle Scholar
  2. Alipour M, Dorval C, Suntres ZE, Omri A (2011) Bismuth-ethanedithiol incorporated in a liposome-loaded tobramycin formulation modulates the alginate levels in mucoid Pseudomonas aeruginosa. J Pharm Pharmacol 63:999–1007. doi: 10.1111/j.2042-7158.2011.01304.x CrossRefGoogle Scholar
  3. Andreasen JJ, Andersen LP (1987) In vitro susceptibility of Campylobacter pyloridis to cimetidine, sucralfate, bismuth and sixteen antibiotics. Acta Pathologica, Microbiologica, et Immunologica Scandinavica Sect B 95:147–149Google Scholar
  4. Andrews PC, Deacon GB, Forsyth CM, Junk PC, Kumar I, Maguire M (2006) Towards a structural understanding of the anti-ulcer and anti-gastritis drug bismuth subsalicylate. Angew Chem 45:5638–5642. doi: 10.1002/anie.200600469 CrossRefGoogle Scholar
  5. Bera RK, Mandal SM, Raj CR (2014) Antimicrobial activity of fluorescent Ag nanoparticles. Lett Appl Microbiol 58:520–526. doi: 10.1111/lam.12222 CrossRefGoogle Scholar
  6. Botequim D, Maia J, Lino MM, Lopes LM, Simoes PN, Ilharco LM, Ferreira L (2012) Nanoparticles and surfaces presenting antifungal, antibacterial and antiviral properties. Langmuir 28:7646–7656. doi: 10.1021/la300948n CrossRefGoogle Scholar
  7. Brogan AP, Verghese J, Widger WR, Kohn H (2005) Bismuth-dithiol inhibition of the Escherichia coli rho transcription termination factor. J Inorg Biochem 99:841–851. doi: 10.1016/j.jinorgbio.2004.12.019 CrossRefGoogle Scholar
  8. Cornick NA, Silva M, Gorbach SL (1990) In vitro antibacterial activity of bismuth subsalicylate. Rev Infect Dis 12(Suppl 1):S9–S10CrossRefGoogle Scholar
  9. Cremet L et al (2015) Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells. Pathog Dis. doi: 10.1093/femspd/ftv065 Google Scholar
  10. Delchier JC, Malfertheiner P, Thieroff-Ekerdt R (2014) Use of a combination formulation of bismuth, metronidazole and tetracycline with omeprazole as a rescue therapy for eradication of Helicobacter pylori. Aliment Pharmacol Therap 40:171–177. doi: 10.1111/apt.12808 CrossRefGoogle Scholar
  11. dos Santos CA et al (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharma Sci 103:1931–1944. doi: 10.1002/jps.24001 CrossRefGoogle Scholar
  12. DuPont HL (1987) Bismuth subsalicylate in the treatment and prevention of diarrheal disease. Drug Intell Clin Pharm 21:687–693Google Scholar
  13. DuPont HL, Sullivan P, Pickering LK, Haynes G, Ackerman PB (1977) Symptomatic treatment of diarrhea with bismuth subsalicylate among students attending a Mexican university. Gastroenterology 73:715–718Google Scholar
  14. Elmi F et al (2014) The use of antibacterial activity of ZnO nanoparticles in the treatment of municipal wastewater. Water Sci Technol 70:763–770. doi: 10.2166/wst.2014.232 CrossRefGoogle Scholar
  15. Ericsson CD, Evans DG, DuPont HL, Evans DJ Jr, Pickering LK (1977) Bismuth subsalicylate inhibits activity of crude toxins of Escherichia coli and Vibrio cholerae. J Infect Dis 136:693–696CrossRefGoogle Scholar
  16. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and Gram-negative bacteria. Nanomed-Nanotechnol 6:103–109CrossRefGoogle Scholar
  17. Feris K et al (2010) Electrostatic interactions affect nanoparticle-mediated toxicity to Gram-negative bacterium Pseudomonas aeruginosa PAO1. Langmuir 26:4429–4436CrossRefGoogle Scholar
  18. Ge R, Chen Z, Zhou Q (2012) The actions of bismuth in the treatment of Helicobacter pylori infections: an update. Metallomics 4:239–243. doi: 10.1039/c2mt00180b CrossRefGoogle Scholar
  19. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem 15:897–900. doi: 10.1021/bc049951i CrossRefGoogle Scholar
  20. Hajipour MJ et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511. doi: 10.1016/j.tibtech.2012.06.004 CrossRefGoogle Scholar
  21. Harris LG, Foster SJ, Richards RG (2002) An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review. Eur Cell Mater 4:39–60Google Scholar
  22. Hernandez L, Vazquez B, Lopez-Bravo A, Parra J, Goni I, Gurruchaga M (2007) Acrylic bone cements with bismuth salicylate: behavior in simulated physiological conditions. J Biomed Mater Res, Part A 80:321–332. doi: 10.1002/jbm.a.30947 CrossRefGoogle Scholar
  23. Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Nino K, Garza-Enriquez M, De la Garza-Ramos MA, Cabral-Romero C (2012) Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int J Nanomed 7:2109–2113. doi: 10.2147/IJN.S29854 Google Scholar
  24. Hernandez-Delgadillo R, Velasco-Arias D, Martinez-Sanmiguel JJ, Diaz D, Zumeta-Dube I, Arevalo-Nino K, Cabral-Romero C (2013) Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. Int J Nanomed 8:1645–1652. doi: 10.2147/IJN.S38708 Google Scholar
  25. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145. doi: 10.1016/j.jconrel.2011.07.002 CrossRefGoogle Scholar
  26. Jiang W, Mashayekhi H, Xing BS (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157:1619–1625CrossRefGoogle Scholar
  27. Khan SS, Mukherjee A, Chandrasekaran N (2011) Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species. Colloid Surf B 87:129–138CrossRefGoogle Scholar
  28. Kim EC, Lee BC, Chang HS, Lee W, Hong CU, Min KS (2008) Evaluation of the radiopacity and cytotoxicity of Portland cements containing bismuth oxide. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:e54–e57. doi: 10.1016/j.tripleo.2007.08.001 CrossRefGoogle Scholar
  29. Kim SH, Tramontina VA, Papalexiou V, Luczsyzyn SM, De Lima AA, do Prado AM (2012) Bismuth subgallate as a topical haemostatic agent at the palatal wounds: a histologic study in dogs. Int J Oral Maxillofac Surg 41:239–243. doi: 10.1016/j.ijom.2011.12.002 CrossRefGoogle Scholar
  30. Lipovsky A, Gedanken A, Nitzan Y, Lubart R (2011) Enhanced inactivation of bacteria by metal-oxide nanoparticles combined with visible light irradiation. Lasers Surg Med 43:236–240. doi: 10.1002/lsm.21033 CrossRefGoogle Scholar
  31. Luo Y, Hossain M, Wang CM, Qiao Y, An JC, Ma LY, Su M (2013) Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria. Nanoscale 5:687–694CrossRefGoogle Scholar
  32. Mahony DE, Woods A, Eelman MD, Burford N, Veldhuyzen van Zanten SJ (2005) Interaction of bismuth subsalicylate with fruit juices, ascorbic acid, and thiol-containing substrates to produce soluble bismuth products active against Clostridium difficile. Antimicrob Agents Chemother 49:431–433. doi: 10.1128/AAC.49.1.431-433.2005 CrossRefGoogle Scholar
  33. Manhart MD (1990) In vitro antimicrobial activity of bismuth subsalicylate and other bismuth salts. Rev Infect Dis 12(Suppl 1):S11–S15CrossRefGoogle Scholar
  34. Markowska K, Grudniak AM, Wolska KI (2013) Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol 60:523–530Google Scholar
  35. Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R (2013) Antimicrobial silver: uses, toxicity and potential for resistance. Biometals 26:609–621. doi: 10.1007/s10534-013-9645-z CrossRefGoogle Scholar
  36. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRefGoogle Scholar
  37. Nazari P et al (2014) The antimicrobial effects and metabolomic footprinting of carboxyl-capped bismuth nanoparticles against Helicobacter pylori. Appl Biochem Biotechnol 172:570–579. doi: 10.1007/s12010-013-0571-x CrossRefGoogle Scholar
  38. Pacifico L, Osborn JF, Anania C, Vaira D, Olivero E, Chiesa C (2012) Review article: bismuth-based therapy for Helicobacter pylori eradication in children. Aliment Pharmacol Ther. doi: 10.1111/j.1365-2036.2012.05055.x Google Scholar
  39. Palanikumar L, Ramasamy SN, Balachandran C (2014) Size-dependent antimicrobial response of zinc oxide nanoparticles. IET Nanobiotechnol 8:111–117. doi: 10.1049/iet-nbt.2012.0008 CrossRefGoogle Scholar
  40. Pardo OA, Pardo Castello V (1952) The treatment of early syphilis with penicillin and bismuth subsalicylate; follow-up report. Am J Syph Gonorrhea Vener Dis 36:342–345Google Scholar
  41. Purvis JE (1926) CV.: the absorption spectra of various derivatives of salicylic acid. J Chem Soc 48:775–778CrossRefGoogle Scholar
  42. Purvis JE (1927) The absorption spectra of various alkaloids and their salicylates and of derivatives of salicylic acid. J Chem Soc:2715-2719Google Scholar
  43. Riool M et al (2014) Staphylococcus epidermidis originating from titanium implants infects surrounding tissue and immune cells. Acta Biomater 10:5202–5212. doi: 10.1016/j.actbio.2014.08.012 CrossRefGoogle Scholar
  44. Rispoli F, Angelov A, Badia D, Kumar A, Seal S, Shah V (2010) Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli. J Hazard Mater 180:212–216. doi: 10.1016/j.jhazmat.2010.04.016 CrossRefGoogle Scholar
  45. Roy A, Gauri SS, Bhattacharya M, Bhattacharya J (2013) Antimicrobial activity of CaO nanoparticles. J Biomed Nanotechnol 9:1570–1578CrossRefGoogle Scholar
  46. Rybtke M, Hultqvist LD, Givskov M, Tolker-Nielsen T (2015) Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. J Mol Biol. doi: 10.1016/j.jmb.2015.08.016 Google Scholar
  47. Schaller M, Laude J, Bodewaldt H, Hamm G, Korting HC (2004) Toxicity and antimicrobial activity of a hydrocolloid dressing containing silver particles in an ex vivo model of cutaneous infection. Skin Pharmacol Physiol 17:31–36. doi: 10.1159/000074060 CrossRefGoogle Scholar
  48. Serena T et al (2007) Bismuth subgallate/borneol (suile) is superior to bacitracin in the human forearm biopsy model for acute wound healing. Adv Skin Wound Care 20:485–492. doi: 10.1097/01.ASW.0000288208.85807.b8 CrossRefGoogle Scholar
  49. Shaikh AR, Giridhar R, Yadav MR (2007) Bismuth-norfloxacin complex: synthesis, physicochemical and antimicrobial evaluation. Int J Pharm 332:24–30. doi: 10.1016/j.ijpharm.2006.11.037 CrossRefGoogle Scholar
  50. Slikkerveer A, de Wolff FA (1989) Pharmacokinetics and toxicity of bismuth compounds. Med Toxicol Advers Drug Exp 4:303–323CrossRefGoogle Scholar
  51. Sox TE, Olson CA (1989) Binding and killing of bacteria by bismuth subsalicylate. Antimicrob Agents Chemother 33:2075–2082CrossRefGoogle Scholar
  52. Steinhoff MC, Douglas RG Jr, Greenberg HB, Callahan DR (1980) Bismuth subsalicylate therapy of viral gastroenteritis. Gastroenterology 78:1495–1499Google Scholar
  53. Tillman LA, Drake FM, Dixon JS, Wood JR (1996) Review article: safety of bismuth in the treatment of gastrointestinal diseases. Aliment Pharmacol Therap 10:459–467CrossRefGoogle Scholar
  54. Tomita RJ, de Matos RA, Vallim MA, Courrol LC (2014) A simple and effective method to synthesize fluorescent nanoparticles using tryptophan and light and their lethal effect against bacteria. J Photochem Photobiol, B 140C:157–162. doi: 10.1016/j.jphotobiol.2014.07.015 CrossRefGoogle Scholar
  55. Tramontina VA, Machado MA, Nogueira Filho Gda R, Kim SH, Vizzioli MR, Toledo S (2002) Effect of bismuth subgallate (local hemostatic agent) on wound healing in rats. Histol Histometric Find Braz Dent J 13:11–16Google Scholar
  56. Tsuang YH, Sun JS, Huang YC, Lu CH, Chang WHS, Wang CC (2008) Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif Organs 32:167–174CrossRefGoogle Scholar
  57. Wang ZP, Lee YH, Wu B, Horst A, Kang YS, Tang YJJ, Chen DR (2010) Anti-microbial activities of aerosolized transition metal oxide nanoparticles. Chemosphere 80:525–529CrossRefGoogle Scholar
  58. Weir E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in anti-microbial materials and their characterization. Analyst 133:835–845. doi: 10.1039/b715532h CrossRefGoogle Scholar
  59. Yang G (2012) Laser ablation in liquids: principles and applications in the preparation of nanomaterials. Pan Stanford Publishing Pte Ltd, BostonCrossRefGoogle Scholar
  60. Zhang LL, Jiang YH, Ding YL, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mariela Flores-Castañeda
    • 1
  • Alejandro L. Vega-Jiménez
    • 2
  • Argelia Almaguer-Flores
    • 2
  • Enrique Camps
    • 1
  • Mario Pérez
    • 1
  • Phaedra Silva-Bermudez
    • 3
  • Edgardo Berea
    • 4
  • Sandra E. Rodil
    • 5
  1. 1.Instituto Nacional de Investigaciones NuclearesMexicoMexico
  2. 2.Facultad de Odontología, DEPeI, IUniversidad Nacional Autónoma de MéxicoMexicoMexico
  3. 3.Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina RegenerativaInstituto Nacional de RehabilitaciónMexicoMexico
  4. 4.FarmaQuimia SA de CV.Cuautitlan IzcalliMexico
  5. 5.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations