Correlation between structural, optical, and electrical properties of self-assembled plasmonic nanostructures on the GaAs surface

  • Polina V. Gladskikh
  • Igor A. Gladskikh
  • Nikita A. Toropov
  • Mikhail A. Baranov
  • Tigran A. Vartanyan
Research Paper


Self-assembled silver nanostructures on the industry-grade monocrystalline GaAs (100) wafer surface were obtained via physical vapor deposition and characterized by optical reflection spectroscopy, scanning electron microscopy, and current–voltage curve measurements. Reflection spectra of the samples with Ag equivalent thicknesses of 5, 7.5, and 10 nm demonstrated wide plasmonic bands in the visible range of spectra. Thermal annealing of the nanostructures led to narrowing of the plasmonic bands caused by major transformations of the film morphology. While the As prepared films predominantly had a small-scale labyrinth structure, after annealing well-separated silver nanoislands are formed on the gallium arsenide surface. A clear correlation between films morphology and their optical and electrical properties is elucidated. Annealing of the GaAs substrate with Ag nanostructures at 100 °C under control of the resistivity allowed us to obtain and fix the structure at the percolation threshold. It is established that the samples at the percolation threshold possess the properties of resistance switching and hysteresis.

Graphical Abstract


Silver GaAs Optical properties Morphology Resistance switching Localized plasmon resonance 



This work was partially supported by Ministry of Education and Science (Project No 2014/190) and the Government of Russia (Grant No. 074-U01), EU Project LIMACONA (IRSES-GA-2013-612600), the RFBR (14-02-31281), and the President’s Grant (MK 4694.2015.2). The authors are grateful to V.V. Chaldyshev for many useful discussions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213. doi: 10.1038/nmat2629 CrossRefGoogle Scholar
  2. Beck FJ, Mokkapati S, Catchpole KR (2011) Light trapping with plasmonic particles: beyond the dipole model. Opt Express 19:25230–25241. doi: 10.1364/OE.19.025230 CrossRefGoogle Scholar
  3. Gladskikh IA, Leonov NB, Przhibel’skii SG, Vartanyan TA (2014) The optical and electrical properties and resistance switching of granular films of silver on sapphire. J Opt Technol 81:280–284. doi: 10.1364/JOT.81.000280 CrossRefGoogle Scholar
  4. Hong L, Rusli Wang X, Zheng H, He L, Xu X, Wang H, Yu YuH (2012) Design principles for plasmonic thin film GaAs solar cells with high absorption enhancement. J Appl Phys 112:054326. doi: 10.1063/1.4749800 CrossRefGoogle Scholar
  5. Hylton NP, Li XF, Giannini V, Lee K-H, Ekins-Daukes NJ, Loo J, Vercruysse D, Van Dorpe P, Sodabanlu H, Sugiyama M, Maier SA (2013) Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes. Sci Rep 3:2874. doi: 10.1038/srep02874 CrossRefGoogle Scholar
  6. Kachan SM, Ponyavina AN (2002) Spectral properties of close-packed monolayers consisting of metal nanospheres. J Phys Condens Matter 14:103–111. doi: 10.1088/0953-8984/14/1/309 CrossRefGoogle Scholar
  7. Kambe K (1955) Cohesive energy of noble metals. Phys Rev 99:419. doi: 10.1103/PhysRev.99.419 CrossRefGoogle Scholar
  8. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. doi: 10.1021/jp026731y CrossRefGoogle Scholar
  9. Kudykina TA (1993) Optical properties of semiconductors (Ge, Si, GaAs, InSb) in the region of fundamental absorption. Phys Status Solidi B 179:215–221. doi: 10.1002/pssb.2221790123 CrossRefGoogle Scholar
  10. Lazar P, Otyepka M (2015) Accurate surface energies from first principles. Phys Rev B 91:115402. doi: 10.1103/PhysRevB.91.115402 CrossRefGoogle Scholar
  11. Lee SC, Dawson LR, Huang SH, Brueck SRJ (2011) Lithography-free nanoscale patterned growth of GaAs on Si (001) with sub 100 nm silica nanoparticles by molecular beam epitaxy. Cryst Growth Des 11:3673–3676. doi: 10.1021/cg101363q CrossRefGoogle Scholar
  12. Lee D, Li M-Y, Sui M, Zhang Q, Pandey P, Kim E-S, Lee J (2015) Observation of shape, configuration, and density of silver nanoparticles on various GaAs surfaces via deposition amount, annealing temperature, and dwelling time. Nanoscale Res Lett 10:240. doi: 10.1186/s11671-015-0950-z CrossRefGoogle Scholar
  13. Leem JW, Yu JS, Song YM, Lee YT (2011) Antireflective characteristics of disordered GaAs subwavelength structures by thermally dewetted silver nanoparticles. Sol Energy Mater Sol Cells 95:669–676. doi: 10.1016/j.solmat.2010.09.038 CrossRefGoogle Scholar
  14. Liu W, Wang X, Li Y, Geng Z, Yang F, Li J (2011) Surface plasmon enhanced GaAs thin film solar cells. Sol Energy Mater Sol Cells 95:693–698. doi: 10.1016/j.solmat.2010.10.004 CrossRefGoogle Scholar
  15. Liu W, Wang X, Xu R, Wang X, Cheng K, Ma H, Yang F, Lic J (2013) Long-range ordered Ag nanodot arrays grown on GaAs substrate using nanoporous alumina mask. Mater Sci Semicond Process 16:160–164. doi: 10.1016/j.mssp.2012.05.008 CrossRefGoogle Scholar
  16. Lüth H (2010) Solid surfaces, interfaces and thin films. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  17. Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904–1–121904-3. doi: 10.1063/1.2988288 Google Scholar
  18. Pandey PA, Bell GR, Rourke JP, Sanchez AM, Elkin MD, Hickey BJ, Wilson NR (2011) Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal–graphene interactions. Small 7:3202–3210. doi: 10.1002/smll.201101430 CrossRefGoogle Scholar
  19. Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106–1–063106-3. doi: 10.1063/1.1855423 CrossRefGoogle Scholar
  20. Shirakawa H, Komiyama H (1999) Migration-coalescence of nanoparticles during deposition of Au, Ag, Cu, and GaAs on amorphous SiO2. J Nanopart Res 1:17–30. doi: 10.1023/A:1010085430195 CrossRefGoogle Scholar
  21. Shu G-W, Liao W-C, Hsu C-L, Lee J-Y, Hsu I-J, Shen J-L, Yang M-D, Wu C-H, Lee Y-C, Chou W-C (2010) Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles. Adv Sci Lett 3:368–372. doi: 10.1166/asl.2010.1137 CrossRefGoogle Scholar
  22. Sun Y (2010) Metal nanoplates on semiconductor substrates. Adv Funct Mater 20:3646–3657. doi: 10.1002/adfm.201001336 CrossRefGoogle Scholar
  23. Toropov NA, Kaliteevskaya EN, Leonov NB, Vartanyan TA (2012) Mutual modification of silver nanoparticle plasmon resonances and the absorptive properties of polymethine-dye molecular layers on a sapphire surface. Opt Spectrosc 113:616–620. doi: 10.1134/S0030400X12120090 CrossRefGoogle Scholar
  24. Toropov NA, Parfenov PS, Vartanyan TA (2014) Aggregation of cyanine dye molecules in the near fields of plasmonic nanoparticles excited by pulsed laser irradiation. J Phys Chem C 118:18010–18014. doi: 10.1021/jp505234j CrossRefGoogle Scholar
  25. Ushanov VI, Chaldyshev VV, Il’inskaya ND, Lebedeva NM, Yagovkina MA, Preobrazhenskii VV, Putyato MA, Semyagin BR (2014) Fröhlich resonance in the AsSb/AlGaAs system. Phys Sol State 56:1952–1956. doi: 10.1134/S106378341410031X CrossRefGoogle Scholar
  26. Vartanyan TA, Leonov NB, Khromov VV, Przhibel’skii SG, Toropov NA, Kaliteevskaya EN (2012) Granular metal films on the surfaces of transparent dielectric materials studied and modified via optical means. Proc SPIE 8414:841404. doi: 10.1117/12.923123 CrossRefGoogle Scholar
  27. Vartanyan TA, Gladskikh IA, Leonov NB, Przhibel’skii SG (2014) Fine structures and switching of electrical conductivity in labyrinth silver films on sapphire. Phys Sol State 56:816–822. doi: 10.1134/S1063783414040349 CrossRefGoogle Scholar
  28. Vidoni O, Neumeier S, Bardou N, Pelouard J-L, Schmid G (2003) Self-assembly of gold nanoclusters on molecularly modified GaAs. J Clust Sci 14:325–336. doi: 10.1023/B:JOCL.0000005067.63818.39 CrossRefGoogle Scholar
  29. Wang R, Pitzer M, Fruk L, Hu D, Schaadt DM (2012) Nanoparticles and efficiency enhancement in plasmonic solar cells. J Nanoelectron Optoelectron 7:322–327. doi: 10.1166/jno.2012.1311 CrossRefGoogle Scholar
  30. Yang M, Fu Zh, Lin F, Zhu X (2011) Incident angle dependence of absorption enhancement in plasmonic solar cells. Opt Express 19:A763–A771. doi: 10.1364/OE.19.00A763 CrossRefGoogle Scholar
  31. Yin Z, Tang X, Liu W, Deny S, Zhao J, Zhang D (2007) Study of InAs/GaAs quantum dots grown by MOVPE under the safer growth conditions. J Nanopart Res 9:877–884. doi: 10.1007/s11051-006-9161-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Polina V. Gladskikh
    • 1
  • Igor A. Gladskikh
    • 1
  • Nikita A. Toropov
    • 1
  • Mikhail A. Baranov
    • 1
  • Tigran A. Vartanyan
    • 1
  1. 1.ITMO UniversitySaint PetersburgRussia

Personalised recommendations