Impact of surface coating and food-mimicking media on nanosilver-protein interaction

  • Anna Burcza
  • Volker Gräf
  • Elke Walz
  • Ralf Greiner
Research Paper


The application of silver nanoparticles (AgNPs) in food contact materials has recently become a subject of dispute due to the possible migration of silver in nanoform into foods and beverages. Therefore, the analysis of the interaction of AgNPs with food components, especially proteins, is of high importance in order to increase our knowledge of the behavior of nanoparticles in food matrices. AgPURE™ W10 (20 nm), an industrially applied nanomaterial, was compared with AgNPs of similar size frequently investigated for scientific purposes differing in the surface capping agent (spherical AgNP coated with either PVP or citrate). The interactions of the AgNPs with whey proteins (BSA, α-lactalbumin and β-lactoglobulin) at different pH values (4.2, 7 or 7.4) were investigated using surface plasmon resonance, SDS-PAGE, and asymmetric flow field-flow fractionation. The data obtained by the three different methods correlated well. Besides the nature of the protein and the nanoparticle coating, the environment was shown to affect the interaction significantly. The strongest interaction was obtained with BSA and AgNPs in an acidic environment. Neutral and slightly alkaline conditions however, seemed to prevent the AgNP-protein interaction almost completely. Furthermore, the interaction of whey proteins with AgPURE™ W10 was found to be weaker compared to the interaction with the other two AgNPs under all conditions investigated.


Silver nanoparticles Whey proteins BSA Beta-lactoglobulin Alpha-lactalbumin Protein corona 



The authors would like to thank A. Lauckner-Tessin, I. Ebert, A. Tauer, and F. Mohr for their excellent technical assistance, Dr. D. Behsnilian for SEM analysis, and Dr. K. Oehlke for valuable discussions during preparation of the manuscript.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Alarcon EI, Bueno-Alejo CJ, Noel CW, Stamplecoskie KG, Pacioni NL, Poblete H, Scaiano JC (2013) Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization. J Nanopart Res 15:1374–1377CrossRefGoogle Scholar
  2. Artiaga G, Ramos K, Ramos L, Cámara C, Gómez-Gómez M (2015) Migration and characterisation of nanosilver from food containers by af4-icp-ms. Food Chem 166:76–85CrossRefGoogle Scholar
  3. Ashby J, Schachermeyer S, Pan S, Zhong W (2013) Dissociation-based screening of nanoparticle-protein interaction via flow field-flow fractionation. Anal Chem 85:7494–7501CrossRefGoogle Scholar
  4. Ashkarran AA, Ghavami M, Aghaverdi H, Stroeve P, Mahmoudi M (2012) Bacterial effects and protein corona evaluations: crucial ignored factors in the prediction of bio-efficacy of various forms of silver nanoparticles. Chem Res Toxicol 25:1231–1242CrossRefGoogle Scholar
  5. Bolea E, Jimenez-Lamana J, Laborda F, Abad-Alvaro I, Blade C, Arola L, Castillo JR (2014) Detection and characterization of silver nanoparticles and dissolved species of silver in culture medium and cells by asflfff-uv-vis-icpms: application to nanotoxicity tests. Anal 139:914–922CrossRefGoogle Scholar
  6. Bolea E, Jimenez-Lamana J, Laborda F, Castillo JR (2011) Size characterization and quantification of silver nanoparticles by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry. Anal Bioanal Chem 401:2723–2732CrossRefGoogle Scholar
  7. Botasini S, Méndez E (2013) Silver nanoparticle aggregation not triggered by an ionic strength mechanism. J Nanopart Res 15:1526CrossRefGoogle Scholar
  8. Bouwmeester H, Brandhoff P, Marvin HJP, Weigel S, Peters RJB (2014) State of the safety assessment and current use of nanomaterials in food and food production. Trends Food Sci Technol 40:200–210CrossRefGoogle Scholar
  9. Brahma A, Mandal C, Bhattacharyya D (2005) Characterization of a dimeric unfolding intermediate of bovine serum albumin under mildly acidic condition. Biochim Biophys Acta 1751:159–169CrossRefGoogle Scholar
  10. Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Probing bsa binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21:9303–9307CrossRefGoogle Scholar
  11. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632CrossRefGoogle Scholar
  12. Cedervall T et al (2007a) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 46:5754–5756CrossRefGoogle Scholar
  13. Cedervall T et al (2007b) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055CrossRefGoogle Scholar
  14. Chakraborty S, Joshi P, Shanker V, Ansari ZA, Singh SP, Chakrabarti P (2011) Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. Langmuir 27:7722–7731 CrossRefGoogle Scholar
  15. Cukalevski R, Lundqvist M, Oslakovic C, Dahlbäck B, Linse S, Cedervall T (2011) Structural changes in apolipoproteins bound to nanoparticles. Langmuir 27:14360–14369CrossRefGoogle Scholar
  16. De M, You CC, Srivastava S, Rotello VM (2007) Biomimetic interactions of proteins with functionalized nanoparticles: a thermodynamic study. J Am Chem Soc 129:10747–10753CrossRefGoogle Scholar
  17. Delay M, Dolt T, Woellhaf A, Sembritzki R, Frimmel FH (2011) Interactions and stability of silver nanoparticles in the aqueous phase: influence of natural organic matter (nom) and ionic strength. J Chromatogr A 1218:4206–4212CrossRefGoogle Scholar
  18. Echegoyen Y, Nerin C (2013) Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol 62:16–22CrossRefGoogle Scholar
  19. Feng M, Morales AB, Poot A, Beugeling T, Bantjes A (1995) Effects of tween 20 on the desorption of proteins from polymer surfaces. J Biomater Sci Polym Ed 7:415–424CrossRefGoogle Scholar
  20. Gebregeorgis A, Bhan C, Wilson O, Raghavan D (2013) Characterization of silver/bovine serum albumin (Ag/BSA) nanoparticles structure: morphological, compositional, and interaction studies. J Colloid Interface Sci 389:31–41CrossRefGoogle Scholar
  21. Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43:8113–8118CrossRefGoogle Scholar
  22. Gigault J, Pettibone JM, Schmitt C, Hackley VA (2014) Rational strategy for characterization of nanoscale particles by asymmetric-flow field flow fractionation: a tutorial. Anal Chim Acta 809:9–24CrossRefGoogle Scholar
  23. Gnanadhas DP, Ben Thomas M, Thomas R, Raichur AM, Chakravortty D (2013) Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrob Agents Chemother 57:4945–4955CrossRefGoogle Scholar
  24. Hadrup N, Lam HR (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver—a review. Regul Toxicol Pharmacol 68:1–7CrossRefGoogle Scholar
  25. Hakansson A, Magnusson E, Bergenstahl B, Nilsson L (2012) Hydrodynamic radius determination with asymmetrical flow field-flow fractionation using decaying cross-flows. Part I. A theoretical approach. J Chromatogr A 1253:120–126CrossRefGoogle Scholar
  26. Haynes CL (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611CrossRefGoogle Scholar
  27. Hellstrand E et al (2009) Complete high-density lipoproteins in nanoparticle corona. FEBS J 276:3372–3381CrossRefGoogle Scholar
  28. Huhn D et al (2013) Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano 7:3253–3263CrossRefGoogle Scholar
  29. Iosin M, Canpean V, Astilean S (2011) Spectroscopic studies on pH- and thermally induced conformational changes of bovine serum albumin adsorbed onto gold nanoparticles. J Photochem Photobiol A 217:395–401CrossRefGoogle Scholar
  30. Jara FL, Carrera Sánchez C, Rodríguez Patino JM, Pilosof AMR (2014) Competitive adsorption behavior of β-lactoglobulin, α-lactalbumin, bovin serum albumin in presence of hydroxypropylmethylcellulose. Influence of pH. Food Hydrocoll 35:189–197CrossRefGoogle Scholar
  31. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  32. Klein CL et al. (2011) Nm-300 silver characterisation, stability, homogeneity. Publications Office of the European Union EUR 24693 EN:1-84Google Scholar
  33. Kreibig U, Genzel L (1985) Optical absorption of small metallic particles. Surf Sci 156:678–700CrossRefGoogle Scholar
  34. Kurylowicz M, Paulin H, Mogyoros J, Giuliani M, Dutcher JR (2014) The effect of nanoscale surface curvature on the oligomerization of surface-bound proteins. J R Soc Interface 11:20130818CrossRefGoogle Scholar
  35. Ledwith DM, Whelan AM, Kelly JM (2007) A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. J Mater Chem 17:2459–2464CrossRefGoogle Scholar
  36. Lehner R, Wang X, Marsch S, Hunziker P (2013) Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomedicine 9:742–757CrossRefGoogle Scholar
  37. Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175CrossRefGoogle Scholar
  38. Liu W, Rose J, Plantevin S, Auffan M, Bottero JY, Vidaud C (2013) Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona? Nanoscale 5:1658–1668CrossRefGoogle Scholar
  39. Loeschner K et al (2013) Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles. J Chromatogr A 1272:116–125CrossRefGoogle Scholar
  40. Lozano O, Mejia J, Tabarrant T, Masereel B, Dogne JM, Toussaint O, Lucas S (2012) Quantification of nanoparticles in aqueous food matrices using particle-induced x-ray emission. Anal Bioanal Chem 403:2835–2841CrossRefGoogle Scholar
  41. Lundqvist M, Sethson I, Jonsson BH (2004) Protein adsorption onto silica nanoparticles: conformational changes depend on the particles’ curvature and the protein stability. Langmuir 20:10639–10647CrossRefGoogle Scholar
  42. Lundqvist M et al (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5:7503–7509CrossRefGoogle Scholar
  43. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270CrossRefGoogle Scholar
  44. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3:40–47CrossRefGoogle Scholar
  45. MacCuspie RI (2011) Colloidal stability of silver nanoparticles in biologically relevant conditions. J Nanopart Res 13:2893–2908CrossRefGoogle Scholar
  46. Maffre P, Nienhaus K, Amin F, Parak WJ, Nienhaus GU (2011) Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy. Beilstein J Nanotechnol 2:374–383CrossRefGoogle Scholar
  47. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637CrossRefGoogle Scholar
  48. Mahmoudi M, Sheibani S, Milani AS, Rezaee F, Gauberti M, Dinarvand R, Vali H (2015) Crucial role of the protein corona for the specific targeting of nanoparticles. Nanomedicine (Lond) 10:215–226CrossRefGoogle Scholar
  49. Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP (2010) Effects of cell culture media on the dynamic formation of protein- nanoparticle complexes and influence on the cellular response. ACS Nano 4:7481–7491CrossRefGoogle Scholar
  50. Majhi PR, Ganta RR, Vanam RP, Seyrek E, Giger K, Dubin PL (2006) Electrostatically driven protein aggregation: beta-lactoglobulin at low ionic strength. Langmuir 22:9150–9159CrossRefGoogle Scholar
  51. Martirosyan A, Schneider YJ (2014) Engineered nanomaterials in food: implications for food safety and consumer health. Int J Environ Res Public Health 11:5720–5750CrossRefGoogle Scholar
  52. Miclaus T, Bochenkov VE, Ogaki R, Howard KA, Sutherland DS (2014) Spatial mapping and quantification of soft and hard protein coronas at silver nanocubes. Nano Lett 14:2086–2093CrossRefGoogle Scholar
  53. Mitrano DM, Ranville JF, Bednar A, Kazor K, Hering AS, Higgins CP (2014) Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural, and processed waters using single particle ICP-MS (spICP-MS). Environ Sci Nano 1:248–259CrossRefGoogle Scholar
  54. Noh H, Vogler EA (2007) Volumetric interpretation of protein adsorption: competition from mixtures and the Vroman effect. Biomaterials 28:405–422CrossRefGoogle Scholar
  55. Pfeiffer C et al (2014) Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J R Soc Interface 11:20130931CrossRefGoogle Scholar
  56. Podila R, Chen R, Ke PC, Brown JM, Rao AM (2012) Effects of surface functional groups on the formation of nanoparticle-protein corona. Appl Phys Lett 101:263701–263701–263704Google Scholar
  57. Raj S, Jose S, Sumod US, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4:186–193CrossRefGoogle Scholar
  58. Ranjan S, Dasgupta N, Chakraborty AR, Melvin Samuel S, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16:2464CrossRefGoogle Scholar
  59. Ravindran A, Singh A, Raichur AM, Chandrasekaran N, Mukherjee A (2010) Studies on interaction of colloidal Ag nanoparticles with bovine serum albumin (BSA). Colloids Surf B 76:32–37CrossRefGoogle Scholar
  60. Raza S, Yan W, Stenger N, Wubs M, Mortensen NA (2013) Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects. Opt Express 21:27344–27355CrossRefGoogle Scholar
  61. Rezwan K, Studart AR, Vörös J, Gauckler LJ (2005) Change of ζ potential of biocompatible colloidal oxide particles upon adsorption of bovine serum albumin and lysozyme. J Phys Chem B 109:14469–14474CrossRefGoogle Scholar
  62. RIKILT, JRC (2014) Inventory of nanotechnology applications in the agricultural, feed and food sector. EFSA supporting publication, EN-621:1–125Google Scholar
  63. Rostek A, Mahl D, Epple M (2011) Chemical composition of surface-functionalized gold nanoparticles. J Nanopart Res 13:4809–4814CrossRefGoogle Scholar
  64. Ruh H, Kuhl B, Brenner-Weiss G, Hopf C, Diabate S, Weiss C (2012) Identification of serum proteins bound to industrial nanomaterials. Toxicol Lett 208:41–50CrossRefGoogle Scholar
  65. Ruiz-Pena M, Oropesa-Nunez R, Pons T, Louro SR, Perez-Gramatges A (2010) Physico-chemical studies of molecular interactions between non-ionic surfactants and bovine serum albumin. Colloids Surf B 75:282–289CrossRefGoogle Scholar
  66. Sakulkhu U, Mahmoudi M, Maurizi L, Salaklang J, Hofmann H (2014) Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings. Sci Rep 4:5020CrossRefGoogle Scholar
  67. Schachermeyer S, Ashby J, Kwon M, Zhong W (2012) Impact of carrier fluid composition on recovery of nanoparticles and proteins in flow field flow fractionation. J Chromatogr A 1264:72–79CrossRefGoogle Scholar
  68. Shannahan JH, Lai X, Ke PC, Podila R, Brown JM, Witzmann FA (2013) Silver nanoparticle protein corona composition in cell culture media. PLoS One 8:e74001CrossRefGoogle Scholar
  69. Shannahan JH et al (2015) Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors. Toxicol Sci 143:136–146CrossRefGoogle Scholar
  70. Tejamaya M, Römer I, Merrifield RC, Lead JR (2012) Stability of citrate, pvp, and peg coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46:7011–7017CrossRefGoogle Scholar
  71. Treuel L, Malissek M, Gebauer JS, Zellner R (2010) The influence of surface composition of nanoparticles on their interactions with serum albumin. ChemPhysChem 11:3093–3099CrossRefGoogle Scholar
  72. Treuel L, Malissek M, Grass S, Diendorf J, Mahl D, Meyer-Zaika W, Epple M (2012) Quantifying the influence of polymer coatings on the serum albumin corona formation around silver and gold nanoparticles. J Nanopart Res 14:1–12CrossRefGoogle Scholar
  73. von der Kammer F, Legros S, Larsen EH, Loeschner K, Hofmann T (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. Trends Anal Chem 30:425–436CrossRefGoogle Scholar
  74. von Goetz N, Fabricius L, Glaus R, Weitbrecht V, Gunther D, Hungerbuhler K (2013) Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Addit Contam Part A 30:612–620CrossRefGoogle Scholar
  75. Wimuktiwan P, Shiowatana J, Siripinyanond A (2015) Investigation of silver nanoparticles and plasma protein association using flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (FLFFF-ICP-MS). J Anal At Spectrom 30:245–253CrossRefGoogle Scholar
  76. Winuprasith T, Suphantharika M, McClements DJ, He LL (2014) Spectroscopic studies of conformational changes of beta-lactoglobulin adsorbed on gold nanoparticle surfaces. J Colloid Interface Sci 416:184–189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Anna Burcza
    • 1
  • Volker Gräf
    • 1
  • Elke Walz
    • 1
  • Ralf Greiner
    • 1
  1. 1.Department of Food Technology and Bioprocess EngineeringMax Rubner-InstituteKarlsruheGermany

Personalised recommendations