Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

  • Katarzyna Brymora
  • Jonathan Fouineau
  • Asma Eddarir
  • François Chau
  • Nader Yaacoub
  • Jean-Marc Grenèche
  • Jean Pinson
  • Souad Ammar
  • Florent CalvayracEmail author
Research Paper


Combining ab initio modeling and 57Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.


Nanohybrids Iron oxide nanoparticles Diazonium salt chemistry 57Fe Mössbauer spectrometry Ab initio modeling 



The authors are indebted to the French Education and Research Minister for the J.F. and K.B PhD’s Grants. They want to thank GENCI/IDRIS and CRIHAN national and regional facilities for computational time (projects x2014096171 and 007, respectively).

Supplementary material

11051_2015_3232_MOESM1_ESM.docx (756 kb)
Supplementary material 1 (DOCX 755 kb)


  1. Atmane Y, Sicard L, Lamouri A et al (2013) Functionalization of aluminum nanoparticles using a combination of aryl diazonium salt chemistry and iniferter method. J Phys Chem C 117:26000–26006. doi: 10.1021/jp406356s CrossRefGoogle Scholar
  2. Basti H, Ben Tahar L, Smiri L et al (2010) Catechol derivatives-coated Fe3O4 and γ-Fe2O3 nanoparticles as potential MRI contrast agents. J Colloid Interface Sci 341:248–254CrossRefGoogle Scholar
  3. Belanger D, Pinson J (2011) Electrografting: a powerful method for surface modification. Chem Soc Rev 40:3995–4048CrossRefGoogle Scholar
  4. Bell KJ, Brooksby PA, Polson MIJ, Downard AJ (2014) Evidence for covalent bonding of aryl groups to MnO2 nanorods from diazonium-based grafting. Chem Commun 50:13687–13690. doi: 10.1039/C4CC05606J CrossRefGoogle Scholar
  5. Benny S (2010) High temperature water gas shift catalysts: a computer modelling study. UCL (University College London), LondonGoogle Scholar
  6. Binder WH, Weinstabl HC (2007) Surface-modified superparamagnetic iron-oxide nanoparticles. Monatshefte Chem Chem Mon 138:315–320. doi: 10.1007/s00706-007-0617-2 CrossRefGoogle Scholar
  7. Borasio M, Rodríguez de la Fuente O, Rupprechter G, Freund H-J (2005) In situ studies of methanol decomposition and oxidation on Pd (111) by PM-IRAS and XPS spectroscopy. J Phys Chem B 109:17791–17794CrossRefGoogle Scholar
  8. Chehimi MM (2012) Aryl diazonium salts: new coupling agents and surface science. Wiley, HobokenCrossRefGoogle Scholar
  9. Chen S, Liu W (2006) Oleic acid capped PbS nanoparticles: synthesis, characterization and tribological properties. Mater Chem Phys 98:183–189CrossRefGoogle Scholar
  10. Chen X, Chockalingam M, Liu G et al (2011) A molecule with dual functionality 4-aminophenylmethylphosphonic acid: a comparison between layers formed on indium tin oxide by in situ generation of an aryl diazonium salt or by self-assembly of the phosphonic acid. Electroanalysis 23:2633–2642CrossRefGoogle Scholar
  11. Chiou B-H, Tsai Y-T, Wang CM (2014) Phenothiazine-modified electrodes: a useful platform for protein adsorption study. Langmuir 30:1550–1556CrossRefGoogle Scholar
  12. Chung D-J, Oh S-H, Komathi S et al (2012) One-step modification of various electrode surfaces using diazonium salt compounds and the application of this technology to electrochemical DNA (E-DNA) sensors. Electrochim Acta 76:394–403CrossRefGoogle Scholar
  13. Corot C, Robert P, Idée J-M, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504CrossRefGoogle Scholar
  14. Cullity BD, Graham CD (2011) Introduction to magnetic materials. Wiley, HobokenGoogle Scholar
  15. Fang CM, van Huis MA, Zandbergen HW (2009) Structural, electronic, and magnetic properties of iron carbide Fe7C3 phases from first-principles theory. Phys Rev B. doi: 10.1103/PhysRevB.80.224108 Google Scholar
  16. Fleger Y, Mastai Y, Rosenbluh M, Dressler D (2009) SERS as a probe for adsorbate orientation on silver nanoclusters. J Raman Spectrosc 40:1572–1577CrossRefGoogle Scholar
  17. Fouineau J, Brymora K, Ourry L et al (2013) Synthesis, Mössbauer characterization, and ab initio modeling of iron oxide nanoparticles of medical interest functionalized by dopamine. J Phys Chem C 117:14295–14302. doi: 10.1021/jp4027942 CrossRefGoogle Scholar
  18. Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42:1097–1107. doi: 10.1021/ar9000026 CrossRefGoogle Scholar
  19. Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502CrossRefGoogle Scholar
  20. Golosova AA, Papadakis CM, Jordan R (2011) Chemical functionalization of carbon nanotubes with aryl diazonium salts. In: Symposium QQ—carbon functional interfacesGoogle Scholar
  21. Grau-Crespo R, Al-Baitai AY, Saadoune I, De Leeuw NH (2010) Vacancy ordering and electronic structure of γ-Fe2O3 (maghemite): a theoretical investigation. J Phys Condens Matter 22:255401. doi: 10.1088/0953-8984/22/25/255401 CrossRefGoogle Scholar
  22. Griffete N, Herbst F, Pinson J et al (2011) Preparation of water-soluble magnetic nanocrystals using aryl diazonium salt chemistry. J Am Chem Soc 133:1646–1649CrossRefGoogle Scholar
  23. Guillaume V, Thominot P, Coat F et al (1998) Investigation of the iron–carbon bonding for alkyl, alkynyl, carbene, vinylidene, and allenylidene complexes using <sup> 57 </sup> Fe Mössbauer spectroscopy. J Organomet Chem 565:75–80CrossRefGoogle Scholar
  24. Hanini A, Schmitt A, Kacem K et al (2011) Evaluation of iron oxide nanoparticle biocompatibility. Int J Nanomed 6:787Google Scholar
  25. Haque A-MJ, Kim K (2011) Aldehyde-functionalized benzenediazonium cation for multiprobe immobilization on microelectrode array surfaces. Langmuir 27:882–886CrossRefGoogle Scholar
  26. Hurley BL, McCreery RL (2004) Covalent bonding of organic molecules to Cu and Al alloy 2024 T3 surfaces via diazonium ion reduction. J Electrochem Soc 151:B252–B259CrossRefGoogle Scholar
  27. Jiang D, Sumpter BG, Dai S (2006) Structure and bonding between an aryl group and metal surfaces. J Am Chem Soc 128:6030–6031CrossRefGoogle Scholar
  28. Jørgensen J-E, Mosegaard L, Thomsen LE et al (2007) Formation of γ-Fe2O3 nanoparticles and vacancy ordering: an in situ X-ray powder diffraction study. J Solid State Chem 180:180–185. doi: 10.1016/j.jssc.2006.09.033 CrossRefGoogle Scholar
  29. Kataby G, Ulman A, Prozorov R, Gedanken A (1998) Coating of amorphous iron nanoparticles by long-chain alcohols. Langmuir 14:1512–1515CrossRefGoogle Scholar
  30. Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. Magn IEEE Trans 46:2523–2558CrossRefGoogle Scholar
  31. Lamberti F, Agnoli S, Brigo L et al (2013) Surface functionalization of fluorine-doped tin oxide samples through electrochemical grafting. ACS Appl Mater Interfaces 5:12887–12894CrossRefGoogle Scholar
  32. Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23CrossRefGoogle Scholar
  33. Laurentius L, Stoyanov SR, Gusarov S et al (2011) Diazonium-derived aryl films on gold nanoparticles: evidence for a carbon–gold covalent bond. ACS Nano 5:4219–4227CrossRefGoogle Scholar
  34. Lévy M, Wilhelm C, Siaugue J-M et al (2008) Magnetically induced hyperthermia: size-dependent heating power of γ-Fe2O3 nanoparticles. J Phys Condens Matter 20:204133. doi: 10.1088/0953-8984/20/20/204133 CrossRefGoogle Scholar
  35. Lu J, Fan J, Xu R et al (2003) Synthesis of alkyl sulfonate/alcohol-protected γ-Fe2O3 nanocrystals with narrow size distributions. J Colloid Interface Sci 258:427–431. doi: 10.1016/S0021-9797(02)00152-2 CrossRefGoogle Scholar
  36. Lutterotti L, Matthies S, Wenk H (1999) MAUD: a friendly Java program for material analysis using diffraction. IUCr Newslett CPD 21:14–15Google Scholar
  37. Mahouche S, Mekni N, Abbassi L et al (2009) Tandem diazonium salt electroreduction and click chemistry as a novel, efficient route for grafting macromolecules to gold surface. Surf Sci 603:3205–3211CrossRefGoogle Scholar
  38. Mahouche-Chergui S, Gam-Derouich S, Mangeney C, Chehimi MM (2011) Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem Soc Rev 40:4143–4166CrossRefGoogle Scholar
  39. Maldonado S, Smith TJ, Williams RD et al (2006) Surface modification of indium tin oxide via electrochemical reduction of aryldiazonium cations. Langmuir 22:2884–2891CrossRefGoogle Scholar
  40. Matrab T, Chancolon J, L’hermite MM et al (2006) Atom transfer radical polymerization (ATRP) initiated by aryl diazonium salts: a new route for surface modification of multiwalled carbon nanotubes by tethered polymer chains. Colloids Surf Physicochem Eng Asp 287:217–221CrossRefGoogle Scholar
  41. Matrab T, Save M, Charleux B et al (2007) Grafting densely-packed poly-n n-butyl methacrylate chains from an iron substrate by aryl diazonium surface-initiated ATRP: xPS monitoring. Surf Sci 601:2357–2366CrossRefGoogle Scholar
  42. Merson A, Dittrich T, Zidon Y et al (2004) Charge transfer from TiO2 into adsorbed benzene diazonium compounds. Appl Phys Lett 85:1075–1076CrossRefGoogle Scholar
  43. Mirkhalaf F, Mason TJ, Morgan DJ, Saez V (2011) Frequency effects on the surface coverage of nitrophenyl films ultrasonically grafted onto indium tin oxide. Langmuir 27:1853–1858CrossRefGoogle Scholar
  44. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175CrossRefGoogle Scholar
  45. Nilsson A, Pettersson LGM (2004) Chemical bonding on surfaces probed by X-ray emission spectroscopy and density functional theory. Surf Sci Rep 55:49–167CrossRefGoogle Scholar
  46. Pazo-Llorente R, Bravo-Diaz C, Gonzalez-Romero E (2004) pH effects on ethanolysis of some arenediazonium ions: evidence for homolytic dediazoniation proceeding through formation of transient diazo ethers. Eur J Org Chem 2004:3221–3226CrossRefGoogle Scholar
  47. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244CrossRefGoogle Scholar
  48. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  49. Podvorica FI, Kanoufi F, Pinson J, Combellas C (2009) Spontaneous grafting of diazoates on metals. Electrochim Acta 54:2164–2170CrossRefGoogle Scholar
  50. Risse T, Carlsson A, Bäumer M et al (2003) Using IR intensities as a probe for studying the surface chemical bond. Surf Sci 546:L829–L835CrossRefGoogle Scholar
  51. Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121:11595–11596CrossRefGoogle Scholar
  52. Roger C, Hamon P, Toupet L et al (1991) Halo-and alkyl (pentamethylcyclopentadienyl)[1, 2-bis (diphenylphosphino) ethane] iron (III) 17-electron complexes: synthesis, NMR and magnetic properties and EHMO calculations. Organometallics 10:1045–1054CrossRefGoogle Scholar
  53. Ron M, Shechter H, Hirsch A, Niedzwiedz S (1966) On the Mössbauer study of cementite. Phys Lett 20:481–483CrossRefGoogle Scholar
  54. Rosensweig R, Kaiser R, Miskolczy G (1969) Viscosity of magnetic fluid in a magnetic field. J Colloid Interface Sci 29:680–686CrossRefGoogle Scholar
  55. Salah L (2006) Spectroscopic studies of the effect of addition of Y3+ on structural characteristics of Ni–Zn ferrites. Phys Status Solidi A 203:271–281CrossRefGoogle Scholar
  56. Shmakov AN, Kryukova GN, Tsybulya SV et al (1995) Vacancy Ordering in γ-Fe2O3: synchrotron X-ray powder diffraction and high-resolution electron microscopy studies. J Appl Crystallogr 28:141–145. doi: 10.1107/S0021889894010113 CrossRefGoogle Scholar
  57. Sienkiewicz A, Szymula M, Narkiewicz-Michalek J, Bravo-Díaz C (2014) Formation of diazohydroxides ArN2OH in aqueous acid solution: polarographic determination of the equilibrium constant KR for the reaction of 4-substituted arenediazonium ions with H2O. J Phys Org Chem 27:284–289CrossRefGoogle Scholar
  58. Tadmor R, Rosensweig RE, Frey J, Klein J (2000) Resolving the puzzle of ferrofluid dispersants. Langmuir 16:9117–9120CrossRefGoogle Scholar
  59. Valenzuela R (2005) Magnetic ceramics. Cambridge University Press, CambridgeGoogle Scholar
  60. Vericat C, Vela M, Benitez G et al (2006) Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au (111). J Phys Condens Matter 18:R867CrossRefGoogle Scholar
  61. Waldron R (1955) Infrared spectra of ferrites. Phys Rev 99:1727CrossRefGoogle Scholar
  62. White W, DeAngelis B (1967) Interpretation of the vibrational spectra of spinels. Spectrochim Acta Part Mol Spectrosc 23:985–995CrossRefGoogle Scholar
  63. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415. doi: 10.1007/s11671-008-9174-9 CrossRefGoogle Scholar
  64. Yee C, Kataby G, Ulman A et al (1999) Self-assembled monolayers of alkanesulfonic and-phosphonic acids on amorphous iron oxide nanoparticles. Langmuir 15:7111–7115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086ParisFrance
  2. 2.LUNAM Université du Maine, IMMM UMR CNRS 6283Le MansFrance

Personalised recommendations