A green method for the preparation of fluorescent hybrid structures of gold and corrole

  • Ângela S. Pereira
  • Joana F. B. Barata
  • Vanda I. R. C. Vaz Serra
  • Sérgio Pereira
  • Tito Trindade
Research Paper

Abstract

Gold/soap nanostructures were prepared by a green methodology using saponified household sunflower oil, as reducing and organic dispersing agent of auric acid. The incorporation of hydrophobic molecules on the novel water-soluble gold nanoparticles was followed by fluorescence lifetime imaging microscopy, using as model hydrophobic compound 5,10,15-tris-(pentafluorophenyl)corrolatogallium(III)(pyridine) (GaPFC), a highly fluorescent corrole. The results showed the hydrophobic GaPFC located between the organic bilayer surrounding several Au nanoparticles, which in turn were coated with fatty acids salts anchored by the double bond at the gold’s surface.

Graphical Abstract

Keywords

Green methodology Gold nanoparticles Corrole Soap Incorporation 

References

  1. Agadjanian H, Ma J, Rentsendorj A et al (2009) Tumor detection and elimination by a targeted gallium corrole. PNAS 106:6105–6110CrossRefGoogle Scholar
  2. Andrade SM, Costa SMB, Borst JW et al (2008) Translational and rotational motions of albumin sensed by a non-covalent associated porphyrin under physiological and acidic conditions: a fluorescence correlation spectroscopy and time resolved anisotropy study. J Fluoresc 18:601–610. doi:10.1007/s10895-008-0329-y CrossRefGoogle Scholar
  3. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed Engl 44:7852–7872. doi:10.1002/anie.200500766 CrossRefGoogle Scholar
  4. Aviv I, Gross Z (2007) Corrole-based applications. Chem Commun. doi:10.1039/b618482k Google Scholar
  5. Barata JFB, Daniel-da-Silva AL, Neves MGPMS et al (2013) Corrole-silica hybrid particles: synthesis and effects on singlet oxygen generation. RSC Adv 3:274. doi:10.1039/c2ra22133k CrossRefGoogle Scholar
  6. Barata JFB, Zamarrón A, Neves MGPMS et al (2015) Photodynamic effects induced by meso-tris(pentafluorophenyl)corrole and its cyclodextrin conjugates on cytoskeletal components of HeLa cells. Eur J Med Chem 92:135–144. doi:10.1016/j.ejmech.2014.12.025 CrossRefGoogle Scholar
  7. Bardhan R, Grady NK, Cole JR et al (2009) Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. ACS Nano 3:744–752. doi:10.1021/nn900001q CrossRefGoogle Scholar
  8. Bastús NG, Comenge J, Puntes V (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27:11098–11105. doi:10.1021/la201938u CrossRefGoogle Scholar
  9. Bendix J, Dmochowski I (2000) Structural, electrochemical, and photophysical properties of gallium (III) 5,10,15-tris (pentafluorophenyl) corrole. Angew Chem 39:4048–4051CrossRefGoogle Scholar
  10. Blumenfeld CM, Sadtler BF, Fernandez GE et al (2014) Cellular uptake and cytotoxicity of a near-IR fluorescent corrole-TiO2 nanoconjugate. J Inorg Biochem 140:39–44. doi:10.1016/j.jinorgbio.2014.06.015 CrossRefGoogle Scholar
  11. Brust M, Walker M, Bethell D et al (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid? Liquid system. J Chem Soc, Chem Commun. doi:10.1039/c39940000801 Google Scholar
  12. Bunz UHF, Rotello VM (2010) Gold nanoparticle-fluorophore complexes: sensitive and discerning “noses” for biosystems sensing. Angew Chem Int Ed Engl 49:3268–3279. doi:10.1002/anie.200906928 CrossRefGoogle Scholar
  13. Cardote T, Barata JFB, Faustino MAF et al (2012) Pentafluorophenylcorrole–d-galactose conjugates. Tetrahedron Lett 53:6388–6393. doi:10.1016/j.tetlet.2012.09.038 CrossRefGoogle Scholar
  14. Da Silva EC, da Silva MG, Meneghetti SMP et al (2008) Synthesis of colloids based on gold nanoparticles dispersed in castor oil. J Nanoparticle Res 10:201–208. doi:10.1007/s11051-008-9483-z CrossRefGoogle Scholar
  15. Elia P, Zach R, Hazan S et al (2014) Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int J Nanomedicine 9:4007–4021. doi:10.2147/IJN.S57343 Google Scholar
  16. Fateixa S, Correia MR, Trindade T (2013a) Resizing of colloidal gold nanorods and morphological probing by SERS. J Phys Chem C 117:20343–20350. doi:10.1021/jp407216c CrossRefGoogle Scholar
  17. Fateixa S, Pinheiro PC, Nogueira HIS, Trindade T (2013b) Composite blends of gold nanorods and poly(t-butylacrylate) beads as new substrates for SERS. Spectrochim Acta A Mol Biomol Spectrosc 113:100–106. doi:10.1016/j.saa.2013.04.070 CrossRefGoogle Scholar
  18. Fitzmaurice D, Rao SN, Preece JA et al (1999) Heterosupramolecular chemistry: programmed pseudorotaxane assembly at the surface of a nanocrystal. Angew Chem Int Ed 38:1147–1150. doi:10.1002/(sici)1521-3773(19990419)38:8<1147:aid-anie1147>3.0.co;2-a CrossRefGoogle Scholar
  19. Gao J, Huang X, Liu H et al (2012) Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging. Langmuir 28:4464–4471. doi:10.1021/la204289k CrossRefGoogle Scholar
  20. Gryko D, Koszarna B (2003) Refined methods for the synthesis of meso-substituted A 3-and trans-A 2 B-corroles. Org Biomol Chem 1(2):350–357CrossRefGoogle Scholar
  21. Haber A, Angel I, Mahammed A, Gross Z (2013) Combating diabetes complications by 1-Fe, a corrole-based catalytic antioxidant. J Diabetes Complicat 27:316–321. doi:10.1016/j.jdiacomp.2013.02.005 CrossRefGoogle Scholar
  22. Huang J, Li Q, Sun D et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104. doi:10.1088/0957-4484/18/10/105104 CrossRefGoogle Scholar
  23. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586. doi:10.1021/ar7002804 CrossRefGoogle Scholar
  24. Lai S-L, Wang L, Yang C et al (2014) Gold(III) corroles for high performance organic solar cells. Adv Funct Mater 24:4655–4665. doi:10.1002/adfm.201400082 CrossRefGoogle Scholar
  25. Makarova OV, Ostafin AE, Miyoshi H et al (1999) Adsorption and encapsulation of fluorescent probes in nanoparticles. J Phys Chem B 103:9080–9084. doi:10.1021/jp9900786 CrossRefGoogle Scholar
  26. Niu J, Zhu T, Liu Z (2007) One-step seed-mediated growth of 30–150 nm quasispherical gold nanoparticles with 2-mercaptosuccinic acid as a new reducing agent. Nanotechnology 18:325607. doi:10.1088/0957-4484/18/32/325607 CrossRefGoogle Scholar
  27. Pereira AS, Silva NJO, Trindade T, Pereira S (2012) A single-source route for the synthesis of metal oxide nanoparticles using vegetable oil solvents. J Nanosci Nanotechnol 12:8963–8968. doi:10.1166/jnn.2012.6700 CrossRefGoogle Scholar
  28. Qian X, Peng X-H, Ansari DO et al (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90. doi:10.1038/nbt1377 CrossRefGoogle Scholar
  29. Santos C, Barata J, Calvete M et al (2014a) Synthesis and functionalization of corroles. An insight on their nonlinear optical absorption properties. Curr Org Synth 11:29–41. doi:10.2174/15701794113106660084 CrossRefGoogle Scholar
  30. Santos CIM, Oliveira E, Barata JFB et al (2014b) New gallium(III) corrole complexes as colorimetric probes for toxic cyanide anion. Inorg Chim Acta 417:148–154. doi:10.1016/j.ica.2013.09.049 CrossRefGoogle Scholar
  31. Santos SAO, Pinto RJB, Rocha SM et al (2014c) Unveiling the chemistry behind the green synthesis of metal nanoparticles. ChemSusChem 7:2704–2711. doi:10.1002/cssc.201402126 CrossRefGoogle Scholar
  32. Strayer D, Belcher M, Fine J, Mcbrayer T (2006) Food fats, 9th edn. Institute of Shortening and Edible Oils, WashingtonGoogle Scholar
  33. Sudhakar K, Giribabu L, Salvatori P, De Angelis F (2015) Triphenylamine-functionalized corrole sensitizers for solar-cell applications. Phys Status Solidi 212:194–202. doi:10.1002/pssa.201431169 CrossRefGoogle Scholar
  34. Thomas KG, Kamat PV (2003) Chromophore-functionalized gold nanoparticles. Acc Chem Res 36:888–898. doi:10.1021/ar030030h CrossRefGoogle Scholar
  35. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55. doi:10.1039/df9511100055 CrossRefGoogle Scholar
  36. Venditti I, Fontana L, Fratoddi I et al (2014) Direct interaction of hydrophilic gold nanoparticles with dexamethasone drug: loading and release study. J Colloid Interface Sci 418:52–60. doi:10.1016/j.jcis.2013.11.063 CrossRefGoogle Scholar
  37. Wang W, Efrima S, Regev O, Sheva B (1998) Directing oleate stabilized nanosized silver colloids into organic phases. Langmuir 14:602–610. doi:10.1021/la9710177 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ângela S. Pereira
    • 1
  • Joana F. B. Barata
    • 1
    • 2
  • Vanda I. R. C. Vaz Serra
    • 2
    • 3
  • Sérgio Pereira
    • 1
  • Tito Trindade
    • 1
  1. 1.CICECO – Chemistry Department, Aveiro Institute of MaterialsUniversity of AveiroAveiroPortugal
  2. 2.QOPNA Chemistry DepartmentUniversity of AveiroAveiroPortugal
  3. 3.Centro de Química Estrutural, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations