Advertisement

Diazonium salt-mediated synthesis of new amino, hydroxy, propargyl, and maleinimido-containing superparamagnetic Fe@C nanoparticles as platforms for linking bio-entities or organocatalytic moieties

  • Alexander Bunge
  • Lidia Magerusan
  • Ion Morjan
  • Rodica Turcu
  • Gheorghe Borodi
  • Jürgen Liebscher
Research Paper
  • 266 Downloads

Abstract

New magnetic Fe@C nanoparticles in the size range of about 20–50 nm functionalized with amino, hydroxy, propargyl, or maleinimido groups were synthesized by reaction with aryl diazonium salts. Aryl diazonium salts wherein the functional groups are linked via a sulfonamide moiety turned out to be advantageous over those with direct linkage. The obtained Fe@C nanoparticles represent magnetic nanoplatforms for linking bio-entities and organocatalysts using amide formation, CuAAC, or thiol-ene click chemistry as exemplified by selected examples. The Fe@C nanoparticles obtained exhibit supramolecular behavior with high value of saturation magnetization rendering them attractive for practical applications in biomedicine and organocatalysis.

Graphical Abstract

Keywords

Magnetic nanoparticles Click chemistry Diazonium salts Biotin Sulfonamides Carbon shell 

Notes

Acknowledgments

The authors wish to acknowledge Dr. Ioan Bratu for FTIR measurements, Dr. Cristian Leostean for conducting XPS and magnetic measurements, Dr. Lucian Barbu for TEM investigations.

Supplementary material

11051_2015_3167_MOESM1_ESM.doc (6.3 mb)
Supplementary material 1 (DOC 6452 kb)

References

  1. Accelrys Software Inc. (2010) Materials Studio, Release 5.5Google Scholar
  2. Adenier A, Cabet-Deliry E, Chausse A, Griveau S, Mercier F, Pinson J, Vautrin-Ul C (2005) Grafting of nitrophenyl groups on carbon and metallic surfaces without electrochemical induction. Chem Mater 17(3):491–501. doi: 10.1021/Cm0490625 CrossRefGoogle Scholar
  3. Bahr JL, Tour JM (2001) Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem Mater 13(11):3823–3824. doi: 10.1021/Cm0109903 CrossRefGoogle Scholar
  4. Belmont J, Amici R, Galloway C (1995) Carbon black reacted with diazonium salts and products. W. I. P. Organization WorldGoogle Scholar
  5. Bieber TI, Kane B (1956) A new synthesis of sulfanilamides. J Org Chem 21(10):1198–1199. doi: 10.1021/Jo01116a029 CrossRefGoogle Scholar
  6. Cheong S, Ferguson P, Feindel KW, Hermans IF, Callaghan PT, Meyer C, Slocombe A, Su CH, Cheng FY, Yeh CS, Ingham B, Toney MF, Tilley RD (2011) Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. Angew Chem Int Ed 50(18):4206–4209. doi: 10.1002/anie.201100562 CrossRefGoogle Scholar
  7. Combellas C, Kanoufi F, Pinson J, Podvorica FI (2005) Time-of-flight secondary ion mass spectroscopy characterization of the covalent bonding between a carbon surface and aryl groups. Langmuir 21(1):280–286. doi: 10.1021/La048106l CrossRefGoogle Scholar
  8. Doppelt P, Hallais G, Pinson J, Podvorica F, Verneyre S (2007) Surface modification of conducting substrates. Existence of azo bonds in the structure of organic layers obtained from diazonium salts. Chem Mater 19(18):4570–4575. doi: 10.1021/Cm0700551 CrossRefGoogle Scholar
  9. Dumitrache F, Morjan I, Alexandrescu R, Morjan RE, Voicu I, Sandu I, Soare I, Ploscaru M, Fleaca C, Ciupina V, Prodan G, Rand B, Brydson R, Woodword A (2004) Nearly monodispersed carbon coated iron nanoparticles for the catalytic growth of nanotubes/nanofibres. Diam Relat Mater 13(2):362–370. doi: 10.1016/j.diamond.2003.10.022 CrossRefGoogle Scholar
  10. Dumitrache F, Morjan I, Fleaca C, Birjega R, Vasile E, Kuncser V, Alexandrescu R (2011) Parametric studies on iron-carbon composite nanoparticles synthesized by laser pyrolysis for increased passivation and high iron content. Appl Surf Sci 257(12):5265–5269. doi: 10.1016/j.apsusc.2010.11.069 CrossRefGoogle Scholar
  11. Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108(51):11151–11159. doi: 10.1021/Jp046274g CrossRefGoogle Scholar
  12. Geller T, Gerlach A, Kruger CM, Militzer HC (2006) The Julia-Colonna epoxidation: access to chiral, non-racemic epoxides. J Mol Catal a-Chem 251(1–2):71–77. doi: 10.1016/j.molcata.2006.02.003 CrossRefGoogle Scholar
  13. Grass RN, Athanassiou EK, Stark WJ (2007) Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angew Chem Int Edit 46(26):4909–4912. doi: 10.1002/anie.200700613 CrossRefGoogle Scholar
  14. Herrmann IK, Grass RN, Mazunin D, Stark WJ (2009) Synthesis and covalent surface functionalization of nonoxidic iron core-shell nanomagnets. Chem Mater 21(14):3275–3281. doi: 10.1021/Cm900785u CrossRefGoogle Scholar
  15. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501. doi: 10.1002/smll.200500006 CrossRefGoogle Scholar
  16. Ito F, Ukari T, Takasaki M, Yamaguchi K (2012) New applications of multiply charged ionic probes as cleavable cross-linker and polymerization reagent. Tetrahedron Lett 53(26):3378–3381. doi: 10.1016/j.tetlet.2012.04.099 CrossRefGoogle Scholar
  17. Julia S, Masana J, Vega JC (1980) Synthetic enzymes—highly stereoselective epoxidation of chalcone in a triphasic toluene-water-poly[(S)-alanine] system. Angew Chem-Int Ed Engl 19(11):929–931. doi: 10.1002/anie.198009291 CrossRefGoogle Scholar
  18. Julia S, Guixer J, Masana J, Rocas J, Colonna S, Annuziata R, Molinari H (1982) Synthetic enzymes.2. Catalytic asymmetric epoxidation by means of polyamino-acids in a triphase system. J Chem Soc Perk Trans 1(6):1317–1324. doi: 10.1039/P19820001317 CrossRefGoogle Scholar
  19. Kainz QM, Schätz A, Zöpfl A, Stark WJ, Reiser O (2011) Combined covalent and noncovalent functionalization of nanomagnetic carbon surfaces with dendrimers and BODIPY fluorescent dye. Chem Mater 23(16):3606–3613. doi: 10.1021/cm200705d CrossRefGoogle Scholar
  20. Kainz QM, Zeltner M, Rossier M, Stark WJ, Reiser O (2013) Synthesis of trisubstituted ureas by a multistep sequence utilizing recyclable magnetic reagents and scavengers. Chem-Eur J 19(30):10038–10045. doi: 10.1002/chem.201300358 CrossRefGoogle Scholar
  21. Kawasaki H, Nakai K, Arakawa R, Athanassiou EK, Grass RN, Stark WJ (2012) Functionalized graphene-coated cobalt nanoparticles for highly efficient surface-assisted laser desorption/ionization mass spectrometry analysis. Anal Chem 84(21):9268–9275. doi: 10.1021/Ac302004g Google Scholar
  22. Klug HP, Alexander LE (1974) X-Ray diffraction procedures. Wiley, New York, pp 687–703Google Scholar
  23. Lindberg BJ, Hedman J (1975) Molecular spectroscopy by means of Esca.6. Group shifts for N, P and as compounds. Chem Scr 7(4):155–166Google Scholar
  24. Liu GZ, Chockalingham M, Khor SM, Gui AL, Gooding JJ (2010) A comparative study of the modification of gold and glassy carbon surfaces with mixed layers of in situ generated aryl diazonium compounds. Electroanalysis 22(9):918–926. doi: 10.1002/elan.200900539 CrossRefGoogle Scholar
  25. Louault C, D’Amours M, Belanger D (2008) The electrochemical grafting of a mixture of substituted phenyl groups at a glassy carbon electrode surface. ChemPhysChem 9(8):1164–1170. doi: 10.1002/cphc.200800016 CrossRefGoogle Scholar
  26. Lowe AB (2010) Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem-Uk 1(1):17–36. doi: 10.1039/B9py00216b CrossRefGoogle Scholar
  27. Mahouche-Chergui S, Gam-Derouich S, Mangeney C, Chehimi MM (2011) Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem Soc Rev 40(7):4143–4166. doi: 10.1039/C0cs00179a CrossRefGoogle Scholar
  28. Morjan I, Alexandrescu R (2014) New advances in the production of iron-based nanostructures manufactures by laser pyrolysis. In: Nirschl H, Keller K (eds) Upscaling of bio-nano-processes. Springer, Heidelberg, pp 15–37Google Scholar
  29. Nikitenko SI, Koltypin Y, Palchik O, Felner I, Xu XN, Gedanken A (2001) Synthesis of highly magnetic, air-stable iron iron carbide nanocrystalline particles by using power ultrasound. Angew Chem Int Ed 40(23):4447–4449. doi: 10.1002/1521-3773(20011203)40:23 CrossRefGoogle Scholar
  30. Schatz A, Grass RN, Stark WJ, Reiser O (2008) TEMPO supported on magnetic C/Co-nanoparticles: a highly active and recyclable organocatalyst. Chem-Eur J 14(27):8262–8266. doi: 10.1002/chem.200801.001 CrossRefGoogle Scholar
  31. Schatz A, Reiser O, Stark WJ (2010) Nanoparticles as semi-heterogeneous catalyst supports. Chem-Eur J 16(30):8950–8967. doi: 10.1002/chem.200903462 CrossRefGoogle Scholar
  32. Socaci C, Rybka M, Magerusan L, Nan A, Turcu R, Liebscher J (2013) Magnetite nanoparticles coated with alkyne-containing polyacrylates for click chemistry. J Nanopart Res 15(6):1–14. doi: 10.1007/S11051-013-1747-6 Unsp 1747 CrossRefGoogle Scholar
  33. Tan CG, Grass RN (2008) Suzuki cross-coupling reactions on the surface of carbon-coated cobalt: expanding the applicability of core-shell nano-magnets. Chem Commun 36:4297–4299. doi: 10.1039/B807741J CrossRefGoogle Scholar
  34. Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22(5):405–417. doi: 10.1016/S0142-9612(00)00193-9 CrossRefGoogle Scholar
  35. Wang XL, Wan K, Zhou CH (2010) Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur J Med Chem 45(10):4631–4639. doi: 10.1016/j.ejmech.2010.07.031 CrossRefGoogle Scholar
  36. Zeltner M, Grass RN, Schaetz A, Bubenhofer SB, Luechinger NA, Stark WJ (2012) Stable dispersions of ferromagnetic carbon-coated metal nanoparticles: preparation via surface initiated atom transfer radical polymerization. J Mater Chem 22(24):12064–12071. doi: 10.1039/C2jm31085f CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Alexander Bunge
    • 1
  • Lidia Magerusan
    • 1
  • Ion Morjan
    • 2
  • Rodica Turcu
    • 1
  • Gheorghe Borodi
    • 1
  • Jürgen Liebscher
    • 1
    • 3
  1. 1.National Institute of Research and Development for Isotopic and Molecular TechnologiesCluj-NapocaRomania
  2. 2.National Institute for Lasers, Plasma and Radiation PhysicsBucharestRomania
  3. 3.Department of ChemistryHumboldt-University BerlinBerlinGermany

Personalised recommendations