Advertisement

Unifying the templating effects of porous anodic alumina on metallic nanoparticles for carbon nanotube synthesis

  • Mark R. Haase
  • Noe T. Alvarez
  • Rachit Malik
  • Mark Schulz
  • Vesselin Shanov
Research Paper

Abstract

Carbon nanotubes (CNTs) are a promising material for many applications, due to their extraordinary properties. Some of these properties vary in relation to the diameter of the nanotubes; thus, precise control of CNT diameter can be critical. Porous anodic alumina (PAA) membranes have been successfully used to template electrodeposited catalyst. However, the catalysts used in CNT synthesis are frequently deposited with more precise techniques, such as electron beam deposition. We test the efficacy of PAA as a template for electron beam-deposited catalyst by studying the diameter distribution of CNTs grown catalyst of various thicknesses supported by PAA. These are then compared by ANOVA to the diameter distributions of CNTs grown on metal catalyst supported by a conventional alumina film. These results also allow a unified description of two templating effects, the more common particles-in-pores model, and the recently described particles-between-pores.

Keywords

Porous anodic alumina Carbon nanotube Templating Carbon nanotube synthesis 

Notes

Acknowledgments

Financial support for this work was provided by the National Science Foundation (NSF), through the following Grants: Engineering Research Center (ERC), number 0812348; Grant Opportunities for Academic Liaison with Industry (GOALI), number 1120382. Additional support was provided by the Office of Naval Research, through Defense University Research Instrumentation Program (DURIP). Melodie Fickenscher and the Cincinnati branch of the National Institute for Occupational Safety and Health (NIOSH) provided assistance in collecting the Hi-resolution Transmission Electron Microscopy images central to this work. Svitlana Fialkova, of the Center for Advanced Materials and Smart Structures (CAMMS) lab at North Carolina Agricultural and Technical State University (NCAT), provided assistance in collecting and measuring the Hi-resolution Scanning Electron Microscopy images of PAA and CNTs on PAA.

Supplementary material

11051_2015_3159_MOESM1_ESM.docx (12 mb)
Electronic Supplementary Information (ESI) available: Supplementary information includescomplete histograms of the diameter, examples of the TEM images used to collect the diameterdata, and the recipe used to synthesize the carbon nanotubes. Supplementary material 1 (DOCX 12288 kb)

References

  1. Acosta RI (2010) Ostwald ripening of iron (Fe) catalyst nanoparticles on aluminum oxide surfaces (Al2O3) for the growth of carbon nanotubes. Dissertation, Wright State UniversityGoogle Scholar
  2. Altalhi T, Ginic-Markovic M, Han N, Clarke S, Losic D (2011) Synthesis of carbon nanotube (CNT) composite membranes. Membranes 1:37–47CrossRefGoogle Scholar
  3. Alvarez NT, Li F, Pint CL, Mayo JT, Fisher EZ, Tour JM, Colvin VL, Hauge RH (2011) Uniform large diameter carbon nanotubes in vertical arrays from premade near-monodisperse nanoparticles. Chem Mater 23:3466–3475CrossRefGoogle Scholar
  4. Alvine KJ, Shpyrko OG, Pershan PS, Shin K, Russell TP (2006) Capillary filling of anodized alumina nanopore arrays. Phys Rev Lett 97:1–4 175503 CrossRefGoogle Scholar
  5. Amama PB, Pint CL, Kim SM, McJilton L, Eyink KG, Stach EA, Hauge RH, Maruyama B (2001) Influence of alumina type on the evolution and activity of alumina-supported Fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano 4:895–904CrossRefGoogle Scholar
  6. Bentley AK, Farhoud M, Ellis AB, Nickel AML, Lisensky GC, Crone WC (2005) Template Synthesis and Magnetic Manipulation of Nickel Nanowires. J Chem Educ 82:765–768CrossRefGoogle Scholar
  7. Butt HJ, Kappl M (2009) Normal capillary forces. Adv Colloid Interface Sci 146:48–60CrossRefGoogle Scholar
  8. Caupin F (2007) Comment on ‘‘capillary filling of anodized alumina”. Phys Rev Lett 98:259601CrossRefGoogle Scholar
  9. Celestini F (1997) Capillary condensation within nanopores of various geometries. Phys Lett A 228:84–90CrossRefGoogle Scholar
  10. Celestini F, Ten Bosch A (1995) Effect of shape on phase transition temperature of clusters. Phys Lett A 207:307–314CrossRefGoogle Scholar
  11. Che G, Lakshmi BB, Martin CR, Fisher E, Ruoff RS (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Chem Mater 10:260–267CrossRefGoogle Scholar
  12. Chen Y (2010) CVD synthesis of single-walled carbon nanotubes from selected catalysts. Masters Thesis, University of Cincinnati, Ohia, USAGoogle Scholar
  13. Cui X, Wei W, Harrower C, Chen W (2009) Effect of catalyst particle interspacing on the growth of millimeter-scale carbon nanotube arrays by catalytic chemical vapor deposition. Carbon 47:3441–3451CrossRefGoogle Scholar
  14. Dimitrov DI, Milchev A, Binder K (2007) Capillary rise in nanopores: molecular dynamics. Phys Rev Lett 99:054501CrossRefGoogle Scholar
  15. Fedlheim DL, Foss CA (2001) Metal nanoparticles: Synthesis, Characterization, and Applications. CRC Press, Boca RatonGoogle Scholar
  16. Fisher R (1925) Statistical methods for research workers. Oliver and Boyd, EdinburghGoogle Scholar
  17. Gao H, Mu C, Wang F, Xu D, Wu K, Xie Y, Liu S, Wang E, Xu J, Yu D (2003) Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template. J Appl Phys 93:5602–5605CrossRefGoogle Scholar
  18. Hashishin T, Tono Y, TamakI J (2006) Guide growth of carbon nanotube arrays using anodic porous alumina with Ni catalyst. Jpn J Appl Phys 45:333–337CrossRefGoogle Scholar
  19. Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep 31:231–325CrossRefGoogle Scholar
  20. Hu W, Gong D, Chen Z, Yuan L, Saito K, Grimes GA, Kichambare P (2001) Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate. Appl Phys Lett 79:3083–3085CrossRefGoogle Scholar
  21. Huber P, Knorr K, Kityk AV (2005) Capillary rise of liquids in nanopores. Materials Research Society Symposium Proceedings, BostonGoogle Scholar
  22. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  23. Iwasaki T, Motoi T, Den T (1999) Multiwalled carbon nanotubes growth in anodic alumina nanoholes. Appl Phys Lett 1999(75):2044–2046CrossRefGoogle Scholar
  24. Jeong SH, Hwang HY, Hwang SK, Lee KH (2004) Carbon nanotubes based on anodic aluminum oxide nano-template. Carbon 42:2073–2080CrossRefGoogle Scholar
  25. Jessensky O, Muller F, Gosele U (1998) Self-organized formation of hexagonal pore arrays in anodic alumina. App Phys Lett 72:1173–1175CrossRefGoogle Scholar
  26. Keller F, Hunter M, Robinson D (1953) Structural features of oxide coatings on aluminum. J Electrochem Soc 100:411–419CrossRefGoogle Scholar
  27. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on the growth mechanism and mass productions. J Nanosci Nanotechnol 10:3739–3758CrossRefGoogle Scholar
  28. Kyotani T, Tsai LF, Tomita A (1996) Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film. Chem Mater 8:2109–2113CrossRefGoogle Scholar
  29. Lan Y, Wang Y, Ren Z (2001) Physics and applications of aligned carbon nanotubes. Adv Phys 60:553–678CrossRefGoogle Scholar
  30. Lee OJ, Hwang SK, Jeong SH, Lee PS, Lee KH (2005) Synthesis of carbon nanotubes with identical dimensions using an anodic aluminum oxide template on a silicon wafer. Synth Met 148:263–266CrossRefGoogle Scholar
  31. Li J, Papadopoulos C, Xu JM, Moskovits M (1999) Highly-ordered carbon nanotube arrays for electronic applications. Appl Phys Lett 75:367–369CrossRefGoogle Scholar
  32. Meshot ER, Zhao Z, Lua W, Hart AJ (2014) Self-ordering of small-diameter metal nanoparticles by dewetting on hexagonal mesh templates. Nanoscale 6:10106CrossRefGoogle Scholar
  33. Nanda KK, Sahu SN, Behera SN (2002) Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys Rev A 66:013208CrossRefGoogle Scholar
  34. O’Sullivan J, Wood G (1970) The morphology and mechanism of formation of porous anodic films on aluminium. Proc R Soc Lond Ser A 317:511–543CrossRefGoogle Scholar
  35. Rabin O, Herz PR, Lin Y-M, Akinwande AI, Cronin SB, Dresselhaus MS (2013) Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass. Adv Funct Mater 13:631–638CrossRefGoogle Scholar
  36. Rabinovich YI, Adler JJ, Esayanur MS, Ata A, Singh RK, Moudgil BM (2002) Capillary forces between surfaces with nanoscale roughness. Adv Colloid Interface Sci 96:213–230CrossRefGoogle Scholar
  37. Rashidi A, Omidi M, Choolaei M, Nazarazadeh M, Yadegari A, Haghierosadat F, Oroojalian F, Azhdari M (2013) Electromechanical properties of vertically aligned carbon nanotube. Adv Mater Res 705:332–336CrossRefGoogle Scholar
  38. Rummeli M, Kramberger C, Schaffel F, Borowiak-Palen E, Gemming T, Rellinghaus B, Jost O, Loffler M, Ayala P, Pichler T, Kalenczuk AR (2007) Catalyst size dependencies for carbon nanotubes synthesis. Phys Status Solidi (b) 244:3911–3915CrossRefGoogle Scholar
  39. Saito R, Dresselhaus G, Dresselhaus M (1998) Electronic structure of single-wall nanotubes. Physical properties of carbon nanotubes. Imperial College Press, London, pp 59–72CrossRefGoogle Scholar
  40. Schneider JJ, Maksimova NI, Engstler J, Joshi R, Schierholz R, Feile R (2008) Catalyst free growth of a carbon nanotube-alumina composite structure. Inorg Chim Acta 361:1770–1778CrossRefGoogle Scholar
  41. Schneider C, Rasband W, Eliceiri K (2012) NIH image to imageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  42. Shingubara S (2003) Fabrication of nanomaterials using porous alumina templates. J Nanopart Res 5:17–30CrossRefGoogle Scholar
  43. Sohn JI, Kim YS, Nam C, Cho B, Seong TY, Lee S (2005) Fabrication of high-density arrays of individually isolated nanocapacitors using anodic aluminum oxide templates and carbon nanotubes. Appl Phys Lett 87:123115CrossRefGoogle Scholar
  44. Sui Y, Gonzalez-Leon J, Bermudez A, Saniger J (2001a) Synthesis of multi branched carbon nanotubes in porous anodic aluminum oxide template. Carbon 39:1709–1715CrossRefGoogle Scholar
  45. Sui Y, Cui B, Guardian R, Acosta D, Martinez L, Perez R (2001b) Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide. Carbon 40:1011–1016CrossRefGoogle Scholar
  46. Takagi M (1954) Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films. J Phys Soc Jpn 9:359–363CrossRefGoogle Scholar
  47. Vogel EE, Vargas P, Altbir D, Escrig J (2010) Magnetic nanotubes. Handbook of nanophysics: nanotubes and nanowires. CRC Press, Boca Raton, pp 14–16Google Scholar
  48. Wang YM, Kuo HH, Verbrugge MW, Lian J, Wang L, Zhou W (2005) Template synthesis of ordered Pt nanorods in porous anodic alumina. Microsc Microanal 11:1408–1409Google Scholar
  49. Yu WJ, Cho YS, Choi GS, Kim D (2005) Patterned carbon nanotube field emitter using the regular array of an anodic alumium oxide tempate. Nanotechnology 16:S291–S295CrossRefGoogle Scholar
  50. Zhi L, Wu J, Li J, Kolb U, Müllen K (2005) Carbonization of disclike molecules in porous alumina membranes: toward carbon nanotubes with controlled graphene-layer orientation. Angew Chem Int Ed 44:2120–2123CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Biomedical, Chemical and Environmental Engineering580 Engineering Research CenterCincinnatiUSA

Personalised recommendations