Perspectives on the design of safer nanomaterials and manufacturing processes

  • Charles Geraci
  • Donna Heidel
  • Christie Sayes
  • Laura HodsonEmail author
  • Paul Schulte
  • Adrienne Eastlake
  • Sara Brenner


A concerted effort is being made to insert Prevention through Design principles into discussions of sustainability, occupational safety and health, and green chemistry related to nanotechnology. Prevention through Design is a set of principles, which includes solutions to design out potential hazards in nanomanufacturing including the design of nanomaterials, and strategies to eliminate exposures and minimize risks that may be related to the manufacturing processes and equipment at various stages of the lifecycle of an engineered nanomaterial.


Nanomaterial Prevention through design Responsible development Environmental and health effects 



The authors express their gratitude to all of the participants at the Safe Nano Design conference.


The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the National Institute for Occupational Safety and Health.


  1. AIHA (2008) Demonstrating the business value of industrial hygieneGoogle Scholar
  2. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14: 1–16CrossRefGoogle Scholar
  3. ANSI A, ASSE (2012) Z10-2012 occupational health & safety management systems. American Society of Safety Engineers, Park RidgeGoogle Scholar
  4. Baisch BL, Corson NM, Wade-Mercer P, Gelein R, Kennell AJ, Oberdörster G, Elder A (2014) Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation. Part Fibre Toxicol 11(1):5CrossRefGoogle Scholar
  5. Berg JM, Romoser A, Banerjee N, Zebda R, Sayes CM (2009) The relationship between ph and zeta potential of ~30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology 3(4):276–283CrossRefGoogle Scholar
  6. Brouwer DH (2012) Control banding approaches for nanomaterials. Ann Occup Hyg 56(5):506–514Google Scholar
  7. Castranova V (2011) Overview of current toxicological knowledge of engineered nanoparticles. J Occup Environ Med 53:S14–S17CrossRefGoogle Scholar
  8. Dahm MM, Yencken MS, Schubauer-Berigan MK (2011) Exposure control strategies in the carbonaceous nanomaterial industry. J Occup Environ Med 53(6S):S68–S73Google Scholar
  9. Eastlake A, Hodson L, Geraci C, Crawford C (2012) A critical evaluation of material safety data sheets (msdss) for engineered nanomaterials. J Chem Health Saf 19(5):1–8CrossRefGoogle Scholar
  10. Environmental Defense Fund, Dupont (2007) Nano risk framework. Environmental Defense, New YorkGoogle Scholar
  11. Gangwal S, Brown JS, Wang A, Houck KA, Dix DJ, Kavlock RJ, Hubal EAC (2011) Informing selection of nanomaterial concentrations for toxcast in vitro testing based on occupational exposure potential. Environ Health Perspect 119(11):1539–1546CrossRefGoogle Scholar
  12. Harper SL, Carriere JL, Miller JM, Hutchison JE, Maddux BL, Tanguay RL (2011) Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays. ACS Nano 5(6):4688–4697CrossRefGoogle Scholar
  13. Hubbs A, Mercer R, Coad J, Battelli L, Willard P, Sriram K, Wolfarth M, Castranova V, Porter D (2009) Persistent pulmonary inflammation, airway mucous metaplasia and migration of multiwalled carbon nanotubes from the lung after subchronic exposure. Toxicologist 108(1):457Google Scholar
  14. ISO (2004) 14000 environmental management. International Standards Organization, GenevaGoogle Scholar
  15. ISO (2005) Iso/tc 229 nanotechnologies. I. O. f. S. T. Committee (ed) GenevaGoogle Scholar
  16. ISO (2008) 9001 quality management systems. International Standards Organization, GenevaGoogle Scholar
  17. ISO (2012) Standard iso/tr 13329:2012 nanomaterials—preparation of material safety data sheet. International Standards Organization, GenevaGoogle Scholar
  18. Johnson D, Kennedy AJ, Steevens JA, Methner MM (2009) Enhanced occupational exposure to nanomaterials when mixed in environmentally-relevant matrices. Toxicologist 108(1):460Google Scholar
  19. Kim SC, Chen DR, Qi C, Gelein RM, Finkelstein JN, Elder A, Bentley K, Oberdörster G, Pui DYH (2010) A nanoparticle dispersion method for in vitro and in vivo nanotoxicity study. Nanotoxicology 4(1):42–51. doi: 10.3109/17435390903374019
  20. Kreiss K (2012) Respiratory disease among flavoring-exposed workers in food and flavoring manufacture. Clin Pulm Med 19(4):165–173CrossRefGoogle Scholar
  21. Kuempel ED (2011) Carbon nanotube risk assessment: implications for exposure and medical monitoring. J Occup Environ Med 53:S91–S97. doi: 10.1097/JOM.0b013e31821b1f3f. Available from
  22. Kuempel E, Castranova V, Geraci C, Schulte P (2012) Development of risk-based nanomaterial groups for occupational exposure control. J Nanopart Res 14(9):1–15CrossRefGoogle Scholar
  23. Leith D, Miller-Lionberg D, Casuccio G, Lersch T, Lentz H, Marchese A, Volckens J (2013) Development of a transfer function for a personal, thermophoretic nanoparticle sampler. Aerosol Sci Technol 48(1):81–89. doi: 10.1080/02786826.2013.861593. Available from Accessed 09 Oct 2014
  24. Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44(9):1689–1699. doi: 10.1016/j.freeradbiomed.2008.01.028. Available from
  25. Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11):6903–6913. doi: 10.1021/nn102272n. Available from Accessed 07 Oct 2014.
  26. Ma JY, Mercer RR, Barger M, Schwegler-Berry D, Scabilloni J, Ma JK, Castranova V (2012) Induction of pulmonary fibrosis by cerium oxide nanoparticles. Toxicol Appl Pharmacol 262(3):255–264CrossRefGoogle Scholar
  27. Mandrell D, Truong L, Jephson C, Sarker MR, Moore A, Lang C, Simonich MT, Tanguay RL (2012) Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens. J Lab Autom 17(1):66–74. Available from doi: 10.1177/2211068211432197. Available from
  28. Methner M, Hodson L, Geraci C (2010) Nanoparticle emission assessment technique (neat) for the identification and measurement of potential inhalation exposure to engineered nanomaterials—part A. J Occup Environ Hyg 7(3):127–132CrossRefGoogle Scholar
  29. NIOSH (2009) Approaches to safe nanotechnology: managing the health and safety concerns associated with engineered nanomaterials. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health (ed) CincinnatiGoogle Scholar
  30. NIOSH (2010) Prevention through design: plan for the national initiative. HHS Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, CincinnatiGoogle Scholar
  31. NIOSH (2011) Current intelligence bulletin 63: Occupational exposure to titanium dioxide. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health (ed) CincinnatiGoogle Scholar
  32. NIOSH (2013) Current intelligence bulletin 65: Occupational exposure to carbon nanotubes and nanofibers. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health (ed) CincinnatiGoogle Scholar
  33. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16(6–7):437–445. doi: 10.1080/08958370490439597. Available from
  34. OSHA (2012) Hazard communication. O. S. a. H. Adminstration (ed) [Federal Register Volume 77, Number 58 (Monday, March 26, 2012)Google Scholar
  35. Peterson J (1973) Principles for controlling the occupational environment. The industrial environment—its evaluation and control pp 74–117Google Scholar
  36. Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, Leonard S, Battelli L, Schwegler-Berry D, Friend S, Andrew M, Chen BT, Tsuruoka S, Endo M, Castranova V (2010) Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269(2–3):136–147. Available from doi: 10.1016/j.tox.2009.10.017
  37. Roussel C, Connor T (2014) Chemotherapy: current and emerging issues in safe handling of antineoplastic and other hazardous drugs. Oncol Pharm 7(3):8–11. Available from
  38. Sager TM, Wolfarth MW, Andrew M, Hubbs A, Friend S, Chen TH, Porter DW, Wu N, Yang F, Hamilton RF, Holian A (2014) Effect of multi-walled carbon nanotube surface modification on bioactivity in the c57bl/6 mouse model. Nanotoxicology 8(3):317–327. doi: 10.3109/17435390.2013.779757. Available from
  39. Sanchez VC, Jachak A, Hurt RH, Kane AB (2011) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25(1):15–34. doi: 10.1021/tx200339h. Available from Accessed 08 Oct 2014.
  40. Schubauer-Berigan MK, Dahm MM, Yencken MS (2011) Engineered carbonaceous nanomaterials manufacturers in the United States: workforce size, characteristics, and feasibility of epidemiologic studies. J Occup Environ Med 53(6S):S62–S67Google Scholar
  41. Schulte P, Geraci C, Zumwalde R, Hoover M, Kuempel E (2008a) Occupational risk management of engineered nanoparticles. J Occup Environ Hyg 5(4):239–249. doi: 10.1080/15459620801907840. Available from Accessed 01 April 2015.
  42. Schulte PA, Rinehart R, Okun A, Geraci CL, Heidel DS (2008b) National prevention through design (ptd) initiative. J Saf Res 39(2):115–121CrossRefGoogle Scholar
  43. Schulte P, Geraci C, Murashov V, Kuempel E, Zumwalde R, Castranova V, Hoover M, Hodson L, Martinez K (2014) Occupational safety and health criteria for responsible development of nanotechnology. J Nanopart Res 16(1):1–17CrossRefGoogle Scholar
  44. Shaffer R, Rengasamy S (2009) Respiratory protection against airborne nanoparticles: a review. J Nanopart Res 11(7):1661–1672. doi: 10.1007/s11051-009-9649-3. Available from
  45. Shi X, von Dem Bussche A, Hurt RH, Kane AB, Gao H (2011) Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol 6(11):714–719CrossRefGoogle Scholar
  46. Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, Hubbs AF, Mercer RR, Keohavong P, Sussman N, Jin J, Yin J, Stone S, Chen BT, Deye G, Maynard A, Castranova V, Baron PA, Kagan VE (2008) Inhalation vs. aspiration of single-walled carbon nanotubes in c57bl/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesisGoogle Scholar
  47. Tsai CS (2015) Contamination and release of nanomaterials associated with the use of personal protective clothing. Ann Occup Hyg. doi: 10.1093/annhyg/meu111 Google Scholar
  48. Tsai S-JC, Huang RF, Ellenbecker MJ (2010) Airborne nanoparticle exposures while using constant-flow, constant-velocity, and air-curtain-isolated fume hoods. Ann Occup Hyg 54(1):78–87CrossRefGoogle Scholar
  49. Turkevich LA, Dastidar AG, Hachmeister Z, Lim M (2015) Potential explosion hazard of carbonaceous nanoparticles: explosion parameters of selected materials. J Hazard Mater 15(295):97–103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2015

Authors and Affiliations

  • Charles Geraci
    • 1
  • Donna Heidel
    • 2
  • Christie Sayes
    • 3
  • Laura Hodson
    • 1
    Email author
  • Paul Schulte
    • 1
  • Adrienne Eastlake
    • 1
  • Sara Brenner
    • 4
  1. 1.National Institute for Occupational Safety and HealthCincinnatiUSA
  2. 2.Bureau Veritas North America, Inc.EdisonUSA
  3. 3.Baylor UniversityWacoUSA
  4. 4.Colleges of Nanoscale Science and Engineering at State University of New York Polytechnic Institute, (SUNY Poly)AlbanyUSA

Personalised recommendations