Combination of CuO nanoparticles and fluconazole: preparation, characterization, and antifungal activity against Candida albicans

  • Iris S. Weitz
  • Michal Maoz
  • Daniel Panitz
  • Sigal Eichler
  • Ester Segal
Research Paper


Combination therapy becomes an important strategy in the management of invasive fungal infections and emergence of resistant fungi mutants. In this work, we examine the combination of copper oxide (CuO) nanoparticles (NPs) with fluconazole as potential treatment against the pathogenic fungi, Candida albicans. CuO NPs (~7 nm in size) were synthesized with acetate ligands assembled on their surface, as shown by both thermal gravimetric analysis and FTIR spectroscopy. Unlike the commercial CuO (both bulk and 50 nm particles), that are poorly dispersed in water, the interaction with water allows the fine dispersion of the coated CuO NPs and their excellent colloidal stability. The addition of fluconazole to the aqueous CuO dispersion induced spontaneous self-assembly of the NPs into linear pearl-like chains network, shown by cryogenic transmission electron microscopy (cryo-TEM). The antifungal activity of the CuO NPs and their combination with fluconazole (fluconazole–CuO NPs) was studied against C. albicans. The best MIC values were obtained at concentrations as low as 0.2 and 0.3 mg/mL, respectively. The results suggest that fluconazole–CuO NPs can provide a potential alternative treatment for C. albicans infections.


Copper oxide Nanoparticles Antifungal Candida albicans Fluconazole Functionalization Health effects 



This work was supported by a grant from the ORT Braude College research committee. The authors would like to thank Dr. Yishay Feldman (X-ray Diffraction Lab, Department of Chemical Research Support, Weizmann Institute of Science), Dr. Ellina Kesselman (Microscopy Research Engineer at the Technion), Dr. Giorgi Shtenberg, and Dr. Naama Massad-Ivanir for their assistance during this work.

Supplementary material

11051_2015_3149_MOESM1_ESM.pdf (645 kb)
Supplementary material 1 (PDF 646 kb)


  1. Akins RA (2005) An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 43:285–318. doi: 10.1080/13693780500138971 CrossRefGoogle Scholar
  2. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16. doi: 10.1093/jac/48.suppl_1.5 CrossRefGoogle Scholar
  3. Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small (Weinheim an der Bergstrasse, Germany) 8:3326–3337. doi: 10.1002/smll.201200772 CrossRefGoogle Scholar
  4. Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomed 7:3527–3535. doi: 10.2147/IJN.S29020 CrossRefGoogle Scholar
  5. Chen X et al (2014) ASDCD: antifungal synergistic drug combination database. PLoS One 9:e86499. doi: 10.1371/journal.pone.0086499 CrossRefGoogle Scholar
  6. Das D, Nath BC, Phukon P, Dolui SK (2013) Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf B 101:430–433. doi: 10.1016/j.colsurfb.2012.07.002 CrossRefGoogle Scholar
  7. Dhyani S, Kamdem DP (2012) Bioavailability and form of copper in wood treated with copper-based preservative. Wood Sci Technol 46:1203–1213. doi: 10.1007/s00226-012-0475-x CrossRefGoogle Scholar
  8. Fiori A, Van Dijck P (2012) Potent synergistic effect of doxycycline with fluconazole against Candida albicans is mediated by interference with iron homeostasis. Antimicrob Agents Chemother 56:3785–3796. doi: 10.1128/AAC.06017-11 CrossRefGoogle Scholar
  9. Green Iii F, Clausen CA (2005) Copper tolerance of brown-rot fungi: Oxalic acid production in southern pine treated with arsenic-free preservatives. Int Biodeterior Biodegrad 56:75–79. doi: 10.1016/j.ibiod.2005.04.003 CrossRefGoogle Scholar
  10. Guarner J, Brandt ME (2011) Histopathologic diagnosis of fungal infections in the 21st century. Clin Microbiol Rev 24:247–280. doi: 10.1128/CMR.00053-10 CrossRefGoogle Scholar
  11. Gunawan C, Teoh WY, Marquis CP, Amal R (2011) Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 5:7214–7225. doi: 10.1021/nn2020248 CrossRefGoogle Scholar
  12. Hassan MS, Amna T, Yang OB, El-Newehy MH, Al-Deyab SS, Khil MS (2012) Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity. Colloids Surf B 97:201–206. doi: 10.1016/j.colsurfb.2012.04.032 CrossRefGoogle Scholar
  13. Hitchcock CA, Dickinson K, Brown SB, Evans EG, Adams DJ (1990) Interaction of azole antifungal antibiotics with cytochrome P-450-dependent 14 alpha-sterol demethylase purified from Candida albicans. Biochem J 266:475–480CrossRefGoogle Scholar
  14. Hwang E, Kim DH, Hwang YJ, Kim A, Hong S, Kim S (2007) Bidentate structures of acetic acid on Ge(100): the role of carboxyl oxygen. J Phys Chem C 111:5941–5945. doi: 10.1021/jp0632642 CrossRefGoogle Scholar
  15. Johnson MD, MacDougall C, Ostrosky-Zeichner L, Perfect JR, Rex JH (2004) Combination antifungal therapy. Antimicrob Agents Chemother 48:693–715CrossRefGoogle Scholar
  16. Kanafani ZA, Perfect JR (2008) Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis 46:120–128. doi: 10.1086/524071 CrossRefGoogle Scholar
  17. Kida T, Oka T, Nagano M, Ishiwata Y, Zheng XG (2007) Synthesis and application of stable copper oxide nanoparticle suspensions for nanoparticulate film fabrication. J Am Ceram Soc 90:107–110. doi: 10.1111/j.1551-2916.2006.01402.x CrossRefGoogle Scholar
  18. Kontoyiannis DP, Lewis RE (2004) Toward more effective antifungal therapy: the prospects of combination therapy. Br J Haematol 126:165–175. doi: 10.1111/j.1365-2141.2004.05007.x CrossRefGoogle Scholar
  19. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384. doi: 10.1038/nrmicro3028 CrossRefGoogle Scholar
  20. Li C-C, Chang M-H (2004) Colloidal stability of CuO nanoparticles in alkanes via oleate modifications. Mater Lett 58:3903–3907. doi: 10.1016/j.matlet.2004.05.088 CrossRefGoogle Scholar
  21. Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci 106:8344–8349. doi: 10.1073/pnas.0812808106 CrossRefGoogle Scholar
  22. Matocha CJ, Karathanasis AD, Rakshit S, Wagner KM (2005) Reduction of copper(II) by iron(II). J Environ Qual 34:1539–1546. doi: 10.2134/jeq2005.0002 CrossRefGoogle Scholar
  23. Matsunaga H, Kiguchi M, Evans P (2009) Microdistribution of copper-carbonate and iron oxide nanoparticles in treated wood. J Nanopart Res 11:1087–1098. doi: 10.1007/s11051-008-9512-y CrossRefGoogle Scholar
  24. Moosa MY, Sobel JD, Elhalis H, Du W, Akins RA (2004) Fungicidal activity of fluconazole against Candida albicans in a synthetic vagina-simulative medium. Antimicrob Agents Chemother 48:161–167CrossRefGoogle Scholar
  25. Mukherjee PK, Sheehan DJ, Hitchcock CA, Ghannoum MA (2005) Combination treatment of invasive fungal infections. Clin Microbiol Rev 18:163–194. doi: 10.1128/CMR.18.1.163-194.2005 CrossRefGoogle Scholar
  26. Musumeci A, Frost RL (2007) A spectroscopic and thermoanalytical study of the mineral hoganite. Spectrochim Acta Part A 67:48–57. doi: 10.1016/j.saa.2006.05.037 CrossRefGoogle Scholar
  27. Nagaj J, Starosta R, Szczepanik W, Barys M, Mlynarz P, Jezowska-Bojczuk M (2012) The Cu(II)-fluconazole complex revisited. Part I: structural characteristics of the system. J Inorg Biochem 106:23–31. doi: 10.1016/j.jinorgbio.2011.09.014 CrossRefGoogle Scholar
  28. Nickolov Z, Georgiev G, Stoilova D, Ivanov I (1995) Raman and IR study of cobalt acetate dihydrate. J Mol Struct 354:119–125. doi: 10.1016/0022-2860(95)08877-X CrossRefGoogle Scholar
  29. Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52:1. doi: 10.1093/jac/dkg301 CrossRefGoogle Scholar
  30. Pandey P, Merwyn S, Agarwal GS, Tripathi BK, Pant SC (2012) Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria. J Nanopart Res 14:1–13. doi: 10.1007/s11051-011-0709-0 CrossRefGoogle Scholar
  31. Pfaller MA, Pappas PG, Wingard JR (2006) Invasive fungal pathogens: current epidemiological trends. Clin Infect Dis 43:S3–S14. doi: 10.1086/504490 CrossRefGoogle Scholar
  32. Pramanik A, Laha D, Bhattacharya D, Pramanik P, Karmakar P (2012) A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf B 96:50–55. doi: 10.1016/j.colsurfb.2012.03.021 CrossRefGoogle Scholar
  33. Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590. doi: 10.1016/j.ijantimicag.2008.12.004 CrossRefGoogle Scholar
  34. Rex JH, Walsh TJ, Sobel JD, Filler SG, Pappas PG, Dismukes WE, Edwards JE (2000) Practice guidelines for the treatment of candidiasis. Infect Dis Soc Am Clin Infect Dis 30:662–678. doi: 10.1086/313749 CrossRefGoogle Scholar
  35. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  36. Sethi M, Knecht MR (2010) Understanding the mechanism of amino acid-based Au nanoparticle chain formation. Langmuir 26:9860–9874. doi: 10.1021/la100216w CrossRefGoogle Scholar
  37. Shah V, Dobiasova P, Baldrian P, Nerud F, Kumar A, Seal S (2010) Influence of iron and copper nanoparticle powder on the production of lignocellulose degrading enzymes in the fungus Trametes versicolor. J Hazard Mater 178:1141–1145. doi: 10.1016/j.jhazmat.2010.01.141 CrossRefGoogle Scholar
  38. Shinde SS et al (2013) Solid dispersions of poorly water soluble drug using spray drying technique. Int J Drug Deliv 5:8. doi: 10.5138/ijdd.v5i3.1007 Google Scholar
  39. Stanić V, Dimitrijević S, Antić-Stanković J, Mitrić M, Jokić B, Plećaš IB, Raičević S (2010) Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci 256:6083–6089. doi: 10.1016/j.apsusc.2010.03.124 CrossRefGoogle Scholar
  40. Studer AM et al (2010) Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197:169–174. doi: 10.1016/j.toxlet.2010.05.012 CrossRefGoogle Scholar
  41. Thompson GR 3rd, Cadena J, Patterson TF (2009) Overview of antifungal agents. Clin Chest Med 30:203–215. doi: 10.1016/j.ccm.2009.02.001 CrossRefGoogle Scholar
  42. Uthman A, Rezaie S, Dockal M, Ban J, Soltz-Szots J, Tschachler E (2002) Fluconazole downregulates metallothionein expression and increases copper cytotoxicity in Microsporum canis. Biochem Biophys Res Commun 299:688–692CrossRefGoogle Scholar
  43. Vandeputte P, Ferrari S, Coste AT (2012) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012:713687. doi: 10.1155/2012/713687 CrossRefGoogle Scholar
  44. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small (Weinheim an der Bergstrasse, Germany) 6:12–21. doi: 10.1002/smll.200901158 CrossRefGoogle Scholar
  45. Vitanovic E (2012) Use of Cu fungicides in vineyards and olive groves. InTech. doi: 10.5772/26953 Google Scholar
  46. Weitz IS, Knani K, Maoz M, Freitage C, Morrell JJ (2011) The potential for using CuO nanoparticles as a wood preservative. Paper presented at the the international group on wood protection. IRG/WP/11-30569., QueenstownGoogle Scholar
  47. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31. doi: 10.1016/0001-6160(53)90006-6 CrossRefGoogle Scholar
  48. Zhu JW, Li D, Chen HQ, Yang XJ, Lu L, Wang X (2004) Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Mater Lett 58:3324–3327. doi: 10.1016/j.matlet.2004.06.031 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Iris S. Weitz
    • 1
  • Michal Maoz
    • 1
  • Daniel Panitz
    • 1
  • Sigal Eichler
    • 2
  • Ester Segal
    • 2
    • 3
  1. 1.Department of Biotechnology EngineeringORT Braude CollegeKarmielIsrael
  2. 2.Department of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
  3. 3.The Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations