Physicochemical characteristics and occupational exposure to coarse, fine and ultrafine particles during building refurbishment activities

  • Farhad Azarmi
  • Prashant Kumar
  • Mike Mulheron
  • Julien L. Colaux
  • Chris Jeynes
  • Siavash Adhami
  • John F. Watts
Research Paper


Understanding of the emissions of coarse (PM10 ≤10 μm), fine (PM2.5 ≤2.5 μm) and ultrafine particles (UFP <100 nm) from refurbishment activities and their dispersion into the nearby environment is of primary importance for developing efficient risk assessment and management strategies in the construction and demolition industry. This study investigates the release, occupational exposure and physicochemical properties of particulate matter, including UFPs, from over 20 different refurbishment activities occurring at an operational building site. Particles were measured in the 5–10,000-nm-size range using a fast response differential mobility spectrometer and a GRIMM particle spectrometer for 55 h over 8 days. The UFPs were found to account for >90 % of the total particle number concentrations and <10 % of the total mass concentrations released during the recorded activities. The highest UFP concentrations were 4860, 740, 650 and 500 times above the background value during wall-chasing, drilling, cementing and general demolition activities, respectively. Scanning electron microscopy, X-ray photoelectron spectroscopy and ion beam analysis were used to identify physicochemical characteristics of particles and attribute them to probable sources considering the size and the nature of the particles. The results confirm that refurbishment activities produce significant levels (both number and mass) of airborne particles, indicating a need to develop appropriate regulations for the control of occupational exposure of operatives undertaking building refurbishment.

Graphical Abstract


Building refurbishment Particulate matter Ultrafine particles SEM, XPS and IBA Occupational exposure Environmental, health and safety (EHS) 



Ultrafine particle


Particulate matter


Particle number distribution


Particle number concentration


Particle mass concentration


Scanning electron microscope


Focussed ion beam


Particle-induced X-ray emission


Elastic backscattering spectrometry


X-ray photoelectron spectroscopy


Ion beam analysis




International Commission on Radiological Protection


Tidal volume


Deposited fraction


Typical breathing frequency


Minimum level of detection

Supplementary material

11051_2015_3141_MOESM1_ESM.docx (737 kb)
Supplementary material 1 (DOCX 738 kb)


  1. Adachi K, Tainosho Y (2004) Characterization of heavy metal particles embedded in tire dust. Environ Int 30:1009–1017CrossRefGoogle Scholar
  2. Adhami S, Abel ML, Lowe C, Watts JF (2012) Failure of a waterborne primer applied to zinc coated steel. Surf Interface Anal 44:1054–1058CrossRefGoogle Scholar
  3. Adhami S, Abel ML, Lowe C, Watts JF (2014) The role of the adhesion promoter in a model water-borne primer. Surf Interface Anal 46:1005–1008CrossRefGoogle Scholar
  4. Al-Dabbous AN, Kumar P (2014a) The influence of roadside vegetation barriers on airborne nanoparticles and pedestrians exposure under varying wind conditions. Atmos Environ 90:113–124CrossRefGoogle Scholar
  5. Al-Dabbous AN, Kumar P (2014b) Number size distribution of airborne nanoparticles during summertime in Kuwait: first observations from the middle east. Environ Sci Technol 48:13634–13643CrossRefGoogle Scholar
  6. Azarmi F, Kumar P, Mulheron M (2014) The exposure to coarse, fine and ultrafine particle emissions from concrete mixing, drilling and cutting activities. J Hazard Mater 279:268–279CrossRefGoogle Scholar
  7. Barradas N, Jeynes C (2008) Advanced physics and algorithms in the IBA DataFurnace. Nucl Instrum Methods Phys Res Sect B 266:1875–1879CrossRefGoogle Scholar
  8. Batonneau Y, Bremard C, Gengembre L, Laureyns J, Le Maguer A, Le Maguer D, Perdrix E, Sobanska S (2004) Speciation of PM10 Sources of airborne nonferrous metals within the 3-km Zone of Lead/Zinc smelters. Environ Sci Technol 38:5281–5289CrossRefGoogle Scholar
  9. Beck CM, Geyh A, Srinivasan A, Breysse PN, Eggleston PA, Buckley TJ (2003) The impact of a building implosion on airborne particulate matter in an urban community. J Air Waste Manag Assoc 53:1256–1264CrossRefGoogle Scholar
  10. Burt S, Eden P (2004) The August 2003 heatwave in the United Kingdom. Part 2 The hottest sites. Weather 59:239e246Google Scholar
  11. Carpentieri M, Kumar P (2011) Ground-fixed and on-board measurements of nanoparticles in the wake of a moving vehicle. Atmos Environ 45:5837–5852CrossRefGoogle Scholar
  12. Chaloulakou A, Kassomenos P, Spyrellis N, Demokritou P, Koutrakis P (2003) Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece. Atmos Environ 37:649–660CrossRefGoogle Scholar
  13. Chalupa DC, Morrow PE, Oberdörster G, Utell MJ, Frampton MW (2004) Ultrafine particle deposition in subjects with asthma. Environ Health Perspect 112:879CrossRefGoogle Scholar
  14. Chen M, Wang X, Yu Y, Pei Z, Bai X, Sun C, Huang R, Wen L (2000) X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl Surf Sci 158:134–140CrossRefGoogle Scholar
  15. Cohen DD, Bailey GM, Kondepudi R (1996) Elemental analysis by PIXE and other IBA techniques and their application to source fingerprinting of atmospheric fine particle pollution. Nucl Instrum Methods Phys Res Sect B 109:218–226CrossRefGoogle Scholar
  16. Conny JM (2013) Internal composition of atmospheric dust particles from focused ion-beam scanning electron microscopy. Environ Sci Technol 47:8575–8581Google Scholar
  17. Dall’Osto M, Thorpe A, Beddows DCS, Harrison RM, Barlow JF, Dunbar T, Williams PI, Coe H (2011) Remarkable dynamics of nanoparticles in the urban atmosphere. Atmos Chem Phys 11:6623–6637CrossRefGoogle Scholar
  18. Davila AF, Rey D, Mohamed K, Rubio B, Guerra AP (2006) Mapping the sources of urban dust in a coastal environment by measuring magnetic parameters of Platanus hispanica leaves. Environ Sci Technol 40:3922–3928CrossRefGoogle Scholar
  19. Directive C (1999) Council Directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. J Eur Commun 50:41–60Google Scholar
  20. Dorevitch S, Demirtas H, Perksy VW, Erdal S, Conroy L, Schoonover T, Scheff PA (2006) Demolition of high-rise public housing increases particulate matter air pollution in communities of high-risk asthmatics. J Air Waste Manag Assoc 56:1022–1032CrossRefGoogle Scholar
  21. Egbu CO (1999) Skills, knowledge and competencies for managing construction refurbishment works. Construct Manag Econ 17:29–43CrossRefGoogle Scholar
  22. Fujitani Y, Kumar P, Tamura K, Fushimi A, Hasegawa S, Takahashi K, Tanabe K, Kobayashi S, Hirano S (2012) Seasonal differences of the atmospheric particle size distribution in a metropolitan area in Japan. Sci Total Environ 437:339–347CrossRefGoogle Scholar
  23. Fuller GW, Green D (2004) The impact of local fugitive from building works and road works on the assessment of the European union limit value. Atmos Environ 38:4993–5002CrossRefGoogle Scholar
  24. Fuller GW, Carslaw DC, Lodge HW (2002) An empirical approach for the prediction of daily mean PM10 concentrations. Atmos Environ 36:1431–1441CrossRefGoogle Scholar
  25. Goel A, Kumar P (2014) A review of fundamental drivers governing the emissions, dispersion and exposure to vehicle-emitted nanoparticles at signalised traffic intersections. Atmos Environ 97:316–331CrossRefGoogle Scholar
  26. Goel A, Kumar P (2015) Characterisation of nanoparticle emissions and exposure at traffic intersections through fast–response mobile and sequential measurements. Atmos Environ 107:374–390CrossRefGoogle Scholar
  27. Gomez V, Levin M, Saber AT, Irusta S, Dal Maso M, Hanoi R, Santamaria J, Jensen KA, Wallin H, Koponen IK (2014) Comparison of dust release from epoxy and paint nanocomposites and conventional products during sanding and sawing. Ann Occup Hyg. doi:10.1093/annhyg/meu046 Google Scholar
  28. Goyal R, Kumar P (2013) Indoor–outdoor concentrations of particulate matter in nine microenvironments of a mix-use commercial building in megacity Delhi. Air Qual Atmos Health 6:747–757CrossRefGoogle Scholar
  29. Grimm H, Eatough DJ (2009) Aerosol Measurement: the use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction. J Air Waste Manag Assoc 59:101–107CrossRefGoogle Scholar
  30. GroBmann A, Hohmann F, Wiebe K (2013) PortableDyme—a simplified software package for econometric model building. Macroecon Model Policy Eval 120:33Google Scholar
  31. Hansen D, Blahout B, Benner D, Popp W (2008) Environmental sampling of particulate matter and fungal spores during demolition of a building on a hospital area. J Hosp Infect 70:259–264CrossRefGoogle Scholar
  32. He C, Morawska L, Hitchins J, Gilbert D (2004) Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos Environ 38:3405–3415CrossRefGoogle Scholar
  33. Heal MR, Kumar P, Harrison RM (2012) Particles, air quality, policy and health. Chem Soc Rev 41:6606–6630CrossRefGoogle Scholar
  34. HEI (2013) HEI review panel on ultrafine particles. Understanding the health effects of ambient ultrafine particles. HEI Perspectives 3 Health Effects Institute, Boston. [ (accessed 27 August 2014), 122
  35. Hinds WC (1999) Aerosol technology: properties, behaviour and measurement of airborne particles. Wiley, New YorkGoogle Scholar
  36. Hofmann W (2011) Modelling inhaled particle deposition in the human lung d a review. J Aerosol Sci 42:693–724CrossRefGoogle Scholar
  37. Hopke PK, Lamb RE, Natusch DFS (1980) Multielemental characterization of urban roadway dust. Environ Sci Technol 14:164–172CrossRefGoogle Scholar
  38. Hunt A, Johnson DL, Watt JM, Thornton I (1992) Characterizing the sources of particulate lead in house dust by automated scanning electron microscopy. Environ Sci Technol 26:1513–1523CrossRefGoogle Scholar
  39. ICRP (1994) Human respiratory tract model for radiological protection, a report of a task group of the international commission on radiological protection. ICRP Publ 66:1–482Google Scholar
  40. Int Panis L, de Geus B, Vandenbulcke G, Willems H, Degraeuwe B, Bleux N, Mishra V, Thomas I, Meeusen R (2010) Exposure to particulate matter in traffic: a comparison of cyclists and car passengers. Atmos Environ 44:2263–2270CrossRefGoogle Scholar
  41. Jeynes C, Bailey M, Bright N, Christopher M, Grime G, Jones B, Palitsin V, Webb R (2012) “Total IBA”—where are we? Nucl Instrum Methods Phys Res Sect B 271:107–118CrossRefGoogle Scholar
  42. Joodatnia P, Kumar P, Robins A (2013a) The behaviour of traffic produced nanoparticles in a car cabin and resulting exposure rates. Atmos Environ 65:40–51CrossRefGoogle Scholar
  43. Joodatnia P, Kumar P, Robins A (2013b) Fast response sequential measurements and modelling of nanoparticles inside and outside a car cabin. Atmos Environ 71:364–375CrossRefGoogle Scholar
  44. Kohler N, Hassler U (2002) The building stock as a research object. Build Res Inf 30:226–236CrossRefGoogle Scholar
  45. Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen V-M, Birmili W, McMurry PH (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35:143–176CrossRefGoogle Scholar
  46. Kumar P, Morawska L (2014) Recycling concrete: an undiscovered source of ultrafine particles. Atmos Environ 90:51–58CrossRefGoogle Scholar
  47. Kumar P, Fennell P, Britter R (2008) Effect of wind direction and speed on the dispersion of nucleation and accumulation mode particles in an urban street canyon. Sci Total Environ 402:82–94CrossRefGoogle Scholar
  48. Kumar P, Robins A, Vardoulakis S, Britter R (2010) A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmos Environ 44:5035–5052CrossRefGoogle Scholar
  49. Kumar P, Ketzel M, Vardoulakis S, Pirjola L, Britter R (2011a) Dynamics and dispersion modelling of nanoparticles from road traffic in the urban atmospheric environment—a review. J Aerosol Sci 42:580–603CrossRefGoogle Scholar
  50. Kumar P, Robins A, Vardoulakis S, Quincey P (2011b) Technical challenges in tackling regulatory concerns for urban atmospheric nanoparticles. Particulogy 9:566–571CrossRefGoogle Scholar
  51. Kumar P, Azarmi F, Mulheron M (2012a) Enlightening and noxious shades of nanotechnology application in concrete. In: Govil JN (ed) Nanotechnology 7 Civil/Construction Engineering. Studium Press LLC, Houston, pp 255–287. ISBN: 1-62699-009-3Google Scholar
  52. Kumar P, Mulheron M, Fisher B, Harrison RM (2012b) New directions: airborne ultrafine particle dust from building activities—a source in need of quantification. Atmos Environ 56:262–264CrossRefGoogle Scholar
  53. Kumar P, Mulheron M, Som C (2012c) Release of ultrafine particles from three simulated building processes. J Nanopart Res. doi:10.1007/s11051-012-0771-2 Google Scholar
  54. Kumar P, Jain S, Gurjar BR, Sharma P, Khare M, Morawska L, Britter R (2013a) Can a “Blue Sky” return to Indian megacities? Atmos Environ 71:198–201CrossRefGoogle Scholar
  55. Kumar P, Pirjola L, Ketzel M, Harrison RM (2013b) Nanoparticle emissions from 11 non-vehicle exhaust sources—a review. Atmos Environ 67:252–277CrossRefGoogle Scholar
  56. Kumar P, Morawska L, Birmili W, Paasonen P, Hu M, Kulmala M, Harrison RM, Norford L, Britter R (2014) Ultrafine particles in cities. Environ Int 66:1–10CrossRefGoogle Scholar
  57. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng AT-A, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FGR, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood HD, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang Y-H, Khatibzadeh S, Khoo J-P, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh J, Li Y, Lin JK, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Memish ZA, Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Hanafiah KM, Mokdad AA, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson PK, Nolla JM, Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD, Parry CDH, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D, Pope CA, Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP, Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A, Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KR, Stapelberg NJC, Steenland K, Stöckl H, Stovner LJ, Straif K, Straney L, Thurston GD, Tran JH, Van Dingenen R, van Donkelaar A, Veerman JL, Vijayakumar L, Weintraub R, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams W, Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray CJL, Ezzati M (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260CrossRefGoogle Scholar
  58. Mickaityte A, Zavadskas EK, Kaklauskas A, Tupenaite L (2008) The concept model of sustainable buildings refurbishment. Int J Strateg Property Manag 12:53–68CrossRefGoogle Scholar
  59. Mouzourides P, Kumar P, Marina Neophytou KA (2015) Assessment of long-term measurements of particulate matter and gaseous pollutants in South-East Mediterranean. Atmos Environ 107:148–165. doi:10.1016/j.atmosenv.2015.02.031 CrossRefGoogle Scholar
  60. Omer AM (2008) Renewable building energy systems and passive human comfort solutions. Renew Sustain Energy Rev 12:1562–1587CrossRefGoogle Scholar
  61. Pacca S, Horvath A (2002) Greenhouse gas emissions from building and operating electric power plants in the upper Colorado river Basin. Environ Sci Technol 36:3194–3200CrossRefGoogle Scholar
  62. Pattanaik S, Huggins FE, Huffman GP (2012) Chemical speciation of Fe and Ni in residual oil fly ash fine particulate matter using X-ray absorption spectroscopy. Environ Sci Technol 46:12927–12935CrossRefGoogle Scholar
  63. Potgieter-Vermaak SS, Godoi RHM, Grieken RV, Potgieter JH, Oujja M, Castillejo M (2005) Micro-structural characterization of black crust and laser cleaning of building stones by micro-Raman and SEM techniques. Spectrochim Acta Part A 61:2460–2467CrossRefGoogle Scholar
  64. Raki L, Beaudoin J, Alizadeh R, Makar J, Sato T (2010) Cement and concrete nanoscience and nanotechnology. Materials 3:918–942CrossRefGoogle Scholar
  65. Sartori I, Bergsdal H, Müller DB, Brattebø H (2008) Towards modelling of construction, renovation and demolition activities: norway’s dwelling stock, 1900–2100. Build Res Inf 36:412–425CrossRefGoogle Scholar
  66. Sunikka M, Boon C (2003) Environmental policies and efforts in social housing: the Netherlands. Build Res Inf 31:1–12CrossRefGoogle Scholar
  67. Walker S, Jamieson H, Rasmussen P (2011) Application of synchrotron microprobe methods to solid-phase speciation of metals and metalloids in house dust. Environ Sci Technol 45:8233–8240CrossRefGoogle Scholar
  68. Watt IM (1997) The principles and practice of electron microscopy, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  69. Watts JF, Wolstenholme J (2003) An introduction to surface analysis by XPS and AES. In: John FW, John W (eds) An introduction to surface analysis by XPS and AES. Wiley-VCH, New York. ISBN 0-470-84713-1Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Farhad Azarmi
    • 1
  • Prashant Kumar
    • 1
    • 2
  • Mike Mulheron
    • 1
  • Julien L. Colaux
    • 3
  • Chris Jeynes
    • 3
  • Siavash Adhami
    • 4
  • John F. Watts
    • 4
  1. 1.Department of Civil and Environmental Engineering, Faculty of Engineering and Physical SciencesUniversity of SurreyGuildfordUK
  2. 2.Faculty of Engineering and Physical Sciences, Environmental Flow (EnFlo) Research CentreUniversity of SurreyGuildfordUK
  3. 3.Faculty of Engineering and Physical Sciences, Ion Beam CentreUniversity of SurreyGuildfordUK
  4. 4.The Surface Analysis Laboratory, Faculty of Engineering and Physical SciencesUniversity of SurreyGuildfordUK

Personalised recommendations