Advertisement

Influence of relative humidity and physical load during storage on dustiness of inorganic nanomaterials: implications for testing and risk assessment

  • Marcus Levin
  • Elena Rojas
  • Esa Vanhala
  • Minnamari Vippola
  • Biase Liguori
  • Kirsten I. Kling
  • Ismo K. Koponen
  • Kristian Mølhave
  • Timo Tuomi
  • Danijela Gregurec
  • Sergio Moya
  • Keld A. Jensen
Research Paper

Abstract

Dustiness testing using a down-scaled EN15051 rotating drum was used to investigate the effects of storage conditions such as relative humidity and physical loading on the dustiness of five inorganic metal oxide nanostructured powder materials. The tests consisted of measurements of gravimetrical respirable dustiness index and particle size distributions. Water uptake of the powders during 7 days of incubation was investigated as an explanatory factor of the changes. Consequences of these varying storage conditions in exposure modelling were tested using the control banding and risk management tool NanoSafer. Drastic material-specific effects on powder respirable dustiness index were observed with the change in TiO2 from 30 % RH (639 mg/kg) to 50 % RH (1.5 mg/kg). All five tested materials indicate a decreasing dustiness index with relative humidity increasing from 30 to 70 % RH. Test of powder water uptake showed an apparent link with the decreasing dustiness index. Effects of powder compaction appeared more material specific with both increasing and decreasing dustiness indices observed as an effect of compaction. Tests of control banding exposure models using the measured dustiness indices in three different exposure scenarios showed that in two of the tested materials, one 20 % change in RH changed the exposure banding from the lowest level to the highest. The study shows the importance of powder storage conditions prior to tests for classification of material dustiness indices. It also highlights the importance of correct storage information and relative humidity and expansion of the dustiness test conditions specifically, when using dustiness indices as a primary parameter for source strength in exposure assessment.

Keywords

Dustiness Rotating drum Exposure assessment Powder storage Occupational health Nanotechnology 

Notes

Acknowledgments

This work was conducted as part of the Strategic Research effort at the National Research Centre for the Working Environment and the Danish Centre for Nanosafety (20110092173/3) from the Danish Working Environment Research Foundation and the EU Framework seven Programme HINAMOX (228825).

Supplementary material

11051_2015_3139_MOESM1_ESM.docx (871 kb)
Supplementary material 1 (DOCX 871 kb)

References

  1. Aitken RA, Bassan A, Friedrichs S et al (2011) Specific advice on exposure assessment and hazard/risk characterisation for nanomaterials under REACH (RIP-oN 3)Google Scholar
  2. Barr TL, Seal S (1995) Nature of the use of adventitious carbon as a binding energy standard. J Vac Sci Technol A 13:1239–1246. doi: 10.1116/1.579868 CrossRefGoogle Scholar
  3. Borm PJ, Robbins D, Haubold S et al (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11. doi: 10.1186/1743-8977-3-11 CrossRefGoogle Scholar
  4. Brockel U, Wahl M, Kirsch R, Feise HJ (2006) Formation and growth of crystal bridges in bulk solids. Chem Eng Technol 29:691–695CrossRefGoogle Scholar
  5. Brouwer D (2010) Exposure to manufactured nanoparticles in different workplaces. Toxicology 269(2):120–127CrossRefGoogle Scholar
  6. Brouwer DH (2012) Control banding approaches for nanomaterials. Ann Occup Hyg 56:506–514. doi: 10.1093/annhyg/mes039 CrossRefGoogle Scholar
  7. BS EN:15051 (2006) EN15051 Workplace atmospheres: measurement of the dustiness of bulk materials—requirements and reference test methodsGoogle Scholar
  8. Burdett G, Bard D, Kelly A, Thorpe A (2013) The effect of surface coatings on the dustiness of a calcium carbonate nanopowder. J Nanoparticle Res 15:1311. doi: 10.1007/s11051-012-1311-9 CrossRefGoogle Scholar
  9. Cherrie JW, Gillies AT, Sleeuwenhoek A et al (2009) Modelling exposure to pharmaceutical agents. J Phys Conf Ser 151(1):012063CrossRefGoogle Scholar
  10. Engelhard M, Azad S, Peden CHF, Thevuthasan S (2004) X-ray photoelectron spectroscopy studies of oxidized and reduced CeO2(111) surfaces. Surf Sci Spectra 11:73–81. doi: 10.1116/11.20050201 CrossRefGoogle Scholar
  11. Freitag F, Kleinebudde P (2003) How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Comparison of four magnesium carbonates. Eur J Pharm Sci 19:281–289CrossRefGoogle Scholar
  12. Gbureck U, Dembski S, Thull R, Barralet JE (2005) Factors influencing calcium phosphate cement shelf-life. Biomaterials 26:3691–3697CrossRefGoogle Scholar
  13. Haeberle J, Henkel K, Gargouri H et al (2013) Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films. Beilstein J Nanotechnol 4:732–742. doi: 10.3762/bjnano.4.83 CrossRefGoogle Scholar
  14. Hamelmann F, Schmidt E (2005) Methods for dustiness of industrial powders. China Particuol 03:90–93CrossRefGoogle Scholar
  15. Hämeri K, Lähde T, Hussein T et al (2009) Facing the key workplace challenge: assessing and preventing exposure to nanoparticles at source. Inhal Toxicol 21(Suppl 1):17–24. doi: 10.3109/08958370903202804 CrossRefGoogle Scholar
  16. Jensen KA, Koponen IK, Clausen PA, Schneider T (2009) Dustiness behaviour of loose and compacted Bentonite and organoclay powders: what is the difference in exposure risk? J Nanoparticle Res 11:133–146CrossRefGoogle Scholar
  17. Kristensen HV, Jensen KA, Koponen IK et al (2010) Nanopartikler i arbejdsmiljøet - Viden og inspiration om håndtering af nanomaterialer. Industriens Branchearbejdsmiljøråd, Branchearbejdsmiljørådet for Undervisning og Forskning samt Universitets og Bygningsstyrelsen, CopenhagenGoogle Scholar
  18. Kuhlbusch TAJ, Asbach C, Fissan H et al (2011) Nanoparticle exposure at nanotechnology workplaces: a review. Part Fibre Toxicol 8:22. doi: 10.1186/1743-8977-8-22 CrossRefGoogle Scholar
  19. Levin M, Koponen IK, Jensen KA (2014) Exposure assessment of four pharmaceutical powders based on dustiness and evaluation of damaged HEPA filters. J Occup Environ Hyg 11:165–177. doi: 10.1080/15459624.2013.848038 CrossRefGoogle Scholar
  20. Li X, Lenhart JJ, Walker HW (2012) Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 28:1095–1104. doi: 10.1021/la202328n CrossRefGoogle Scholar
  21. Liden G (2006) Dustiness testing of materials handled at workplaces. Ann Occup Hyg 50:437–439CrossRefGoogle Scholar
  22. Liguori B, Hansen SF, Baun A, Jensen KA (Submitted) Comparative analysis of occupational exposure estimation tools for nanomaterials and their applicability for reach Google Scholar
  23. Nishii K, Horio M (2007) Chapter 6 Dry granulation. In: Salman AD (ed) Handbook of Powder Technology. Elsevier Science B.V., pp 289–322 Google Scholar
  24. Paik SY, Zalk DM, Swuste P (2008) Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Ann Occup Hyg 52:419–428CrossRefGoogle Scholar
  25. Pérez-Campaña C, Gómez-Vallejo V, Martin A et al (2012) Tracing nanoparticles in vivo: a new general synthesis of positron emitting metal oxide nanoparticles by proton beam activation. Analyst 137:4902–4906. doi: 10.1039/C2AN35863H CrossRefGoogle Scholar
  26. Pérez-Campaña C, Gómez-Vallejo V, Puigivila M et al (2013) Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles. ACS Nano 7:3498–3505. doi: 10.1021/nn400450p CrossRefGoogle Scholar
  27. Pujara CP (1997) Determination of factors that affect the generation of airborne particles from bulk pharmaceutical powders. Theses Diss Available ProQuest pp 1–155Google Scholar
  28. Rasmussen K, Mech A, Mast J et al (2013) Synthetic amorphous silicon dioxide (NM-200, NM-201, NM-202, NM-203, NM-204): characterisation and physico-chemical properties JRC Repository: NM-series of representative manufactured nanomaterialsGoogle Scholar
  29. Rasmussen K, Mast J, de Temmerman P-J et al (2014) Titanium dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: characterisation and physico-chemical propertiesGoogle Scholar
  30. Reed RB, Ladner DA, Higgins CP et al (2012) Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem 31:93–99. doi: 10.1002/etc.708 CrossRefGoogle Scholar
  31. Schmidt J, Vogelsberger W (2006) Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect. J Phys Chem B 110:3955–3963. doi: 10.1021/jp0553611 CrossRefGoogle Scholar
  32. Schneider T, Jensen KA (2008) Combined single-drop and rotating drum dustiness test of fine to nanosize powders using a small drum. Ann Occup Hyg 52(1):23–34CrossRefGoogle Scholar
  33. Schneider T, Brouwer DH, Koponen IK et al (2011) Conceptual model for assessment of inhalation exposure to manufactured nanoparticles. J Expo Sci Environ Epidemiol 21:450–463CrossRefGoogle Scholar
  34. Singh C, Friedrichs S, Levin M et al (2011) NM-series of representative manufactured nanomaterials—zinc oxide NM-110, NM-111, NM-112, NM-113: characterisation and test item preparationGoogle Scholar
  35. Szepvolgyi J, Mohai I, Gubicza J (2001) Atmospheric ageing of nanosized silicon nitride powders. J Mater Chem 11:859–863CrossRefGoogle Scholar
  36. Tardos GI (2005) Wet-granulation research with application to scale-up. China Particuol 3:191–195CrossRefGoogle Scholar
  37. Tielemans E, Schneider T, Goede H et al (2008) Conceptual model for assessment of inhalation exposure: defining modifying factors. Ann Occup Hyg 52:577–586CrossRefGoogle Scholar
  38. Van Duuren-Stuurman B, Vink SR, Verbist KJM et al (2012) Stoffenmanager nano version 1.0: a web-based tool for risk prioritization of airborne manufactured nano objects. Ann Occup Hyg 56(5):525–541 Google Scholar
  39. Witschger O, Jensen KA, Brouwer DH et al (2014) DUSTINANO: a CEN pre-normative research project to harmonize methods for manufactured nanomaterial powders. Aerosol Technology 2014, Karlsruhe. Abstract T230A09. Session APPVI Dustiness and Resuspension: http://www.gaef.de/AT2014/
  40. Xia T, Kovochich M, Liong M et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134. doi: 10.1021/nn800511k CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Marcus Levin
    • 1
    • 2
  • Elena Rojas
    • 3
  • Esa Vanhala
    • 4
  • Minnamari Vippola
    • 4
    • 5
  • Biase Liguori
    • 2
    • 6
  • Kirsten I. Kling
    • 2
  • Ismo K. Koponen
    • 2
  • Kristian Mølhave
    • 1
  • Timo Tuomi
    • 4
  • Danijela Gregurec
    • 3
  • Sergio Moya
    • 3
  • Keld A. Jensen
    • 2
  1. 1.Department of Micro and NanotechnologyTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.National Research Centre for the Working EnvironmentCopenhagenDenmark
  3. 3.CIC biomaGUNESan SebastiánSpain
  4. 4.Finnish Institute of Occupational HealthHelsinkiFinland
  5. 5.Department of Materials ScienceTampere University of TechnologyTampereFinland
  6. 6.Department of Environmental EngineeringTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations