Advertisement

Control of size and aspect ratio in hydroquinone-based synthesis of gold nanorods

  • Carlo Morasso
  • Silvia Picciolini
  • Domitilla Schiumarini
  • Dora Mehn
  • Isaac Ojea-Jiménez
  • Giuliano Zanchetta
  • Renzo Vanna
  • Marzia Bedoni
  • Davide Prosperi
  • Furio Gramatica
Research Paper

Abstract

In this article, we describe how it is possible to tune the size and the aspect ratio of gold nanorods obtained using a highly efficient protocol based on the use of hydroquinone as a reducing agent by varying the amounts of CTAB and silver ions present in the “seed-growth” solution. Our approach not only allows us to prepare nanorods with a four times increased Au3+ reduction yield, when compared with the commonly used protocol based on ascorbic acid, but also allows a remarkable reduction of 50–60 % of the amount of CTAB needed. In fact, according to our findings, the concentration of CTAB present in the seed-growth solution do not linearly influence the final aspect ratio of the obtained nanorods, and an optimal concentration range between 30 and 50 mM has been identified as the one that is able to generate particles with more elongated shapes. On the optimized protocol, the effect of the concentration of Ag+ ions in the seed-growth solution and the stability of the obtained particles has also been investigated.

Keywords

Au nanorods Plasmonics CTAB Hydroquinone Nanoparticles 

Notes

Acknowledgments

Funding for this research was provided by Fondazione Cariplo (International Recruitment Call 2011, Project title: “An innovative, nanostructured biosensor for early diagnosis and minimal residual disease assessment of cancer, using Surface Enhanced Raman Spectroscopy”) and by the Italian Ministry of Health under the frame of EuroNanoMed II (European Innovative Research & Technological Development Projects in Nanomedicine, project title: “InNaSERSS”). DP was partly supported by the Regional Foundation for Biomedical Research, Lombardia.

Supplementary material

11051_2015_3136_MOESM1_ESM.docx (3.4 mb)
Supplementary material 1 (DOCX 3489 kb)

References

  1. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5:701–708CrossRefGoogle Scholar
  2. Bao C, Beziere N, del Pino P, Pelaz B, Estrada G, Tian F, Ntziachristos V, de la Fuente JM, Cui D (2013) Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small 9:68–74CrossRefGoogle Scholar
  3. Chen H, Shao L, Li Q, Wang J (2013) Gold nanorods and their plasmonic properties. Chem Soc Rev 42:2679–2724CrossRefGoogle Scholar
  4. Choi WI, Kim J-Y, Kang C, Byeon CC, Kim YH, Tae G (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5:1995–2003CrossRefGoogle Scholar
  5. Cobley CM, Chen J, Cho EC, Wang LV, Xia Y (2011) Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40:44–56CrossRefGoogle Scholar
  6. Han G, Ghosh P, Rotello VM (2007) Functionalized gold nanoparticles for drug delivery. Nanomedicine 2:113–123CrossRefGoogle Scholar
  7. Howes PD, Rana S, Stevens MM (2014) Plasmonic nanomaterials for biodiagnostics. Chem Soc Rev 43:3835–3853CrossRefGoogle Scholar
  8. Huang HA, Barua S, Kay DB, Rege K (2009) Simultaneous enhancement of photothermal stability and gene delivery efficacy of gold nanorods using polyelectrolytes. ACS Nano 3:2941–2952CrossRefGoogle Scholar
  9. Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108CrossRefGoogle Scholar
  10. Kinnear C, Burnand D, Clift MJD, Kilbinger AFM, Rothen-Rutishauser B, Petri-Fink A (2014) Polyvinyl alcohol as a biocompatible alternative for the passivation of gold nanorods. Angew Chem Int Ed 53:12613–12617Google Scholar
  11. Mehn D, Morasso C, Vanna R, Bedoni M, Prosperi D, Gramatica F (2013) Immobilised gold nanostars in a paper-based test system for surface-enhanced Raman spectroscopy. Vib Spectrosc 68:45–50CrossRefGoogle Scholar
  12. Morasso C, Mehn D, Vanna R, Bedoni M, Forvi E, Colombo M, Prosperi D, Gramatica F (2014) One-step synthesis of star-like gold nanoparticles for surface enhanced raman spectroscopy. Mater Chem Phys 143:1215–1221CrossRefGoogle Scholar
  13. Partanen A, Erola MOA, Mutanen J, Lajunen H, Suvanto S, Kuittinen M, Pakkanen TT (2015) Enhancing effects of gold nanorods on luminescence of dyes. J Lumin 157:126–130CrossRefGoogle Scholar
  14. Pelaz B, Grazu V, Ibarra A, Magen C, del Pino P, de la Fuente JM (2012) Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications. Langmuir 28:8965–8970CrossRefGoogle Scholar
  15. Pérez-Hernández M, Del Pino P, Mitchell SG, Moros M, Stepien G, Pelaz B, Parak WJ, Gálvez EM, Pardo J, de la Fuente JM (2015) Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms. ACS Nano 27:52–61CrossRefGoogle Scholar
  16. Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131:17042–17043CrossRefGoogle Scholar
  17. Polo E, del Pino P, Pelaz B, Grazua V, de la Fuente JM (2013) Plasmonic-driven thermal sensing: ultralow detection of cancer markers. Chem Commun 49:3676–3678CrossRefGoogle Scholar
  18. Ratto F, Matteini P, Rossi F, Pini R (2010) Size and shape control in the overgrowth of gold nanorods. J Nanopart Res 12:2029–2036CrossRefGoogle Scholar
  19. Rayavarapu RG, Ungureanu C, Krystek P, van Leeuwen TG, Manohar S (2010) Iodide impurities in hexadecyltrimethylammonium bromide (CTAB) products: lot–lot variations and influence on gold nanorod synthesis. Langmuir 26:5050–5055CrossRefGoogle Scholar
  20. Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420CrossRefGoogle Scholar
  21. Saute B, Premasiri R, Ziegler L, Narayanan R (2012) Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides. Analyst 137:5082–5087CrossRefGoogle Scholar
  22. Scarabelli L, Grzelczak M, Liz-Marzán LM (2013) Tuning gold nanorod synthesis through prereduction with salicylic acid. Chem Mater 25:4232–4238CrossRefGoogle Scholar
  23. Soliman MG, Pelaz B, Parak WJ, del Pino P (2015) Phase transfer and polymer coating methods toward improving the stability of metallic nanoparticles for biological applications. Chem Mater 27:990–997CrossRefGoogle Scholar
  24. Vigderman L, Zubarev ER (2013) High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chem Mater 25:1450–1457CrossRefGoogle Scholar
  25. Walsh MJ, Barrow SJ, Tong W, Funston AM, Etheridge J (2015) Symmetry breaking and silver in gold nanorod growth. ACS Nano 9:715–724CrossRefGoogle Scholar
  26. Ye X, Jin L, Caglayan H, Chen J, Xing G, Zheng C, Doan-Nguyen V, Kang Y, Engheta N, Kagan CR, Murray CB (2012) Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 6:2804–2817CrossRefGoogle Scholar
  27. Zou R, Zhang Q, Zhao Q, Peng F, Wang H, Yu H, Yang J (2010) Thermal stability of gold nanorods in an aqueous solution. Colloids Surf A 372:177–181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Carlo Morasso
    • 1
  • Silvia Picciolini
    • 1
  • Domitilla Schiumarini
    • 1
  • Dora Mehn
    • 2
  • Isaac Ojea-Jiménez
    • 2
  • Giuliano Zanchetta
    • 3
  • Renzo Vanna
    • 1
  • Marzia Bedoni
    • 1
  • Davide Prosperi
    • 4
  • Furio Gramatica
    • 1
  1. 1.Laboratory of Nanomedicine and Clinical Biophotonics (LABION)Fondazione Don Carlo Gnocchi ONLUSMilanItaly
  2. 2.Institute for Health and Consumer Protection (IHCP)European Commission Joint Research CentreIspraItaly
  3. 3.Dipartimento di Biotecnologie Mediche e Medicina TraslazionaleUniversitá degli Studi di MilanoSegrateItaly
  4. 4.NanoBioLab, Dipartimento di Biotecnologie e BioscienzeUniversità degli Studi di Milano BicoccaMilanItaly

Personalised recommendations