Highly sensitive C-reactive protein (CRP) assay using metal-enhanced fluorescence (MEF)

  • Yi Zhang
  • Gemma L. KeeganEmail author
  • Ondrej Stranik
  • Margaret E. Brennan-Fournet
  • Colette McDonagh
Research Paper


Fluorescence has been extensively employed in the area of diagnostic immunoassays. A significant enhancement of fluorescence can be achieved when noble metal nanoparticles are placed in close proximity to fluorophores. This effect, referred to as metal-enhanced fluorescence (MEF), has the potential to produce immunoassays with a high sensitivity and a low limit of detection (LOD). In this study, we investigate the fluorescence enhancement effect of two different nanoparticle systems, large spherical silver nanoparticles (AgNPs) and gold edge-coated triangular silver nanoplates, and both systems were evaluated for MEF. The extinction properties and electric field enhancement of both systems were modeled, and the optimum system, spherical AgNPs, was used in a sandwich immunoassay for human C-reactive protein with a red fluorescent dye label. A significant enhancement in the fluorescence was observed, which corresponded to an LOD improvement of ~19-fold compared to a control assay without AgNPs.


Metal nanoparticles Silver nanoparticles Metal-enhanced fluorescence C-reactive protein Immunoassay Biomedical Instrumentation 



This material is based upon works supported by the Science Foundation Ireland under Grant No. 10/CE/B1821. Furthermore, we thank Matthias Zeisberger for the access to the simulation software.

Supplementary material

11051_2015_3128_MOESM1_ESM.docx (119 kb)
Supplementary material 1 (DOCX 119 kb)


  1. Aherne D, Charles DE, Brennan-Fournet ME, Kelly JM, Gun’ko YK (2009) Etching-resistant silver nanoprisms by epitaxial deposition of a protecting layer of gold at the edges. Langmuir 25:10165. doi: 10.1021/la9009493 CrossRefGoogle Scholar
  2. Akihisa Y, Hiroshi K (1992) In situ optical observation of oxygen-adsorption-induced reversible change in the shape of small supported silver particles. Surf Sci 264:147–156. doi: 10.1016/0039-6028(92)90173-4 CrossRefGoogle Scholar
  3. Albrecht C, Kaeppel N, Gauglitz G (2008) Two immunoassay formats for fully automated CRP detection in human serum. Anal Bioanal Chem 391:1845. doi: 10.1007/s00216-008-2093-x CrossRefGoogle Scholar
  4. Aslan K, Lakowicz JR, Geddes CD (2005a) Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence. J Phys Chem B 109:6247. doi: 10.1021/jp044235z CrossRefGoogle Scholar
  5. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005b) Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence. J Phys Chem B 109:3157. doi: 10.1021/jp045186t CrossRefGoogle Scholar
  6. Barnett A, Matveeva EG, Gryczynski I, Gryczynski Z, Goldys EM (2007) Coupled plasmon effects for the enhancement of fluorescent immunoassays. Phys B 394:297. doi: 10.1016/j.physb.2006.12.085 CrossRefGoogle Scholar
  7. Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Adv Opt Photonics 1(3):438–483. doi: 10.1364/AOP.1.000438 CrossRefGoogle Scholar
  8. Charles DE, Aherne D, Gara M, Ledwith DM, Gun’ko YK, Kelly JM, Blau WJ, Brennan-Fournet ME (2010) Versatile solution phase triangular silver nanoplates for highly sensitive plasmon resonance sensing. ACS Nano 4:55. doi: 10.1021/nn9016235 CrossRefGoogle Scholar
  9. Chen Y, Munechika K, Ginger DS (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett 7:690. doi: 10.1021/nl062795z CrossRefGoogle Scholar
  10. Curry A, Nusz G, Chilkoti A, Wax A (2005) Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy. Opt Express 13:2668–2677. doi: 10.1364/OPEX.13.002668 CrossRefGoogle Scholar
  11. Du Clos TW (2000) Function of C-reactive protein. Ann Med 32:274. doi: 10.3109/07853890009011772 CrossRefGoogle Scholar
  12. Hoeppener C, Novotny L (2012) Exploiting the light-metal interaction for biomolecular sensing and imaging. Q Rev Biophys 45(2):209–255. doi: 10.1017/S0033583512000042 CrossRefGoogle Scholar
  13. Hurlimann J, Thorbecke GJ, Hochwald GM (1966) The liver as the site of C-reactive protein formation. J Exp Med 13:365CrossRefGoogle Scholar
  14. Jensen TR, Duval ML, Kelly KL, Lazarides AA, Schatz GC, Van Duyne RP (1999) Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J Phys Chem B 103:9846. doi: 10.1021/jp9926802 CrossRefGoogle Scholar
  15. Kim N, Cho YJ (2013) Optimization of Fluoroimmunoassay against C-reactive protein exploiting immobilized-antigen glass slide. J Fluoresc 23:243. doi: 10.1007/s10895-012-1140-3 CrossRefGoogle Scholar
  16. Kushner I (1982) The phenomenon of the acute phase response. Ann N Y Acad Sci 389:39. doi: 10.1111/j.1749-6632.1982.tb22124.x CrossRefGoogle Scholar
  17. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298:1. doi: 10.1006/abio.2001.5377 CrossRefGoogle Scholar
  18. Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337:171. doi: 10.1016/j.ab.2004.11.026 CrossRefGoogle Scholar
  19. Lakowicz JR, Malicka J, D’Auria S, Gryczynski I (2003) Release of the self-quenching of fluorescence near silver metallic surfaces. Anal Biochem 320:13. doi: 10.1016/S0003-2697(03)00351-8 CrossRefGoogle Scholar
  20. Li S, Floriano PN, Christodoulides N, Fozdar DY, Shao D, Ali MF, Dharshan P, Mohanty S, Neikirk D, McDevitt JT, Chen S (2005) Disposable polydimethylsiloxane/silicon hybrid chips for protein detection. Biosens Bioelectron 21:574. doi: 10.1016/j.bios.2004.12.010 CrossRefGoogle Scholar
  21. Luo Y, Zhang B, Chen M, Jiang T, Zhou D, Huang J, Fu W (2012) Sensitive and rapid quantification of C-reactive protein using quantum dot-labeled microplate immunoassay. J Transl Med 10:24. doi: 10.1186/1479-5876-10-24 CrossRefGoogle Scholar
  22. Matveeva EG, Gryczynski Z, Lakowicz JR (2005) Myoglobin immunoassay based on metal particle-enhanced fluorescence. J Immunol Methods 302:26. doi: 10.1016/j.jim.2005.04.020 CrossRefGoogle Scholar
  23. Nooney RI, Stranik O, McDonagh C, MacCraith BD (2008) Optimization of plasmonic enhancement of fluorescence on plastic substrates. Langmuir 24:11261. doi: 10.1021/la801631w CrossRefGoogle Scholar
  24. Nooney R, Clifford A, Leguevel X, Stranik O, McDonagh C, MacCraith B (2010) Enhancing the analytical performance of immunoassays that employ metal-enhanced fluorescence. Anal Bioanal Chem 396:1127. doi: 10.1007/s00216-009-3357-9 CrossRefGoogle Scholar
  25. Palik ED (1984) Handbook of optical constants of solids. Academic Press Inc, OrlandoGoogle Scholar
  26. Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111:1805. doi: 10.1172/JCI18921 CrossRefGoogle Scholar
  27. Pompa PP, Martiradonna L, Torre AD, Sala FD, Manna L, De Vittorio M, Calabi F, Cingolani R, Rinaldi R (2006) Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat Nanotechnol 1:126. doi: 10.1038/nnano.2006.93 CrossRefGoogle Scholar
  28. Roberts WL, Moulton L, Law TC, Farrow G, Cooper-Anderson M, Savory J, Rifai N (2001) Evaluation of nine automated high-sensitivity C-reactive protein methods: implications for clinical and epidemiological applications. Part 2. Clin Chem 47:418Google Scholar
  29. Sabanayagam CR, Lakowicz JR (2007) Increasing the sensitivity of DNA microarrays by metal-enhanced fluorescence using surface-bound silver nanoparticles. Nucleic Acids Res 35:e13. doi: 10.1093/nar/gkl1054 CrossRefGoogle Scholar
  30. Schneider G, Decher G, Nerambourg N, Praho R, Werts MHV, Blanchard-Desce M (2006) Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes. Nano Lett 6:530. doi: 10.1021/nl052441s CrossRefGoogle Scholar
  31. Stranik O, Nooney R, McDonagh C, MacCraith BD (2007) Optimization of nanoparticle size for plasmonic enhancement of fluorescence. Plasmonics 2:15. doi: 10.1007/s11468-006-9020-9 CrossRefGoogle Scholar
  32. Szmacinski H, Smith DS, Hanson MA, Kostov Y, Lakowicz JR, Rao G (2008) A novel method for monitoring monoclonal antibody production during cell culture. Biotechnol Bioeng 100:448. doi: 10.1002/bit.21795 CrossRefGoogle Scholar
  33. Szmacinski H, Murtaza Z, Lakowicz JR (2010) Time-resolved fluorometric method for one-step immunoassays using plasmonic nanostructures. J Phys Chem C 114:7236. doi: 10.1021/jp906743m CrossRefGoogle Scholar
  34. Tan Y, Li Y, Zhu D (2003) Preparation of silver nanocrystals in the presence of aniline. J Colloid Interface Sci 258:244. doi: 10.1016/S0021-9797(02)00151-0 CrossRefGoogle Scholar
  35. Wolf M, Juncker D, Michel B, Hunziker P, Delamarche E (2004) Simultaneous detection of C-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks. Biosens Bioelectron 19:1193. doi: 10.1016/j.bios.2003.11.003 CrossRefGoogle Scholar
  36. Zhang Y, Aslan K, Previte MJR, Geddes CD (2007) Metal-enhanced fluorescence: surface plasmons can radiate a fluorophore’s structured emission. Appl Phys Lett 90:053107. doi: 10.1063/1.2435661 CrossRefGoogle Scholar
  37. Zhang Q, Li N, Goebl J, Lu Z, Yin Y (2011) Systematic study of the synthesis of silver nanoplates: is citrate a “Magic” reagent? JACS 133:18931. doi: 10.1021/ja2080345 CrossRefGoogle Scholar
  38. Zhang Y, Charles DE, Ledwith DM, Aherne D, Cunningham S, Voisin M, Blau WJ, Gun’ko YK, Kelly JM, Brennan-Fournet ME (2014) Wash-free highly sensitive detection of C-reactive protein using gold derivatised triangular silver nanoplates. RSC Adv 4:29022–29031. doi: 10.1039/C4RA04958F CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yi Zhang
    • 1
  • Gemma L. Keegan
    • 1
    Email author
  • Ondrej Stranik
    • 2
  • Margaret E. Brennan-Fournet
    • 3
  • Colette McDonagh
    • 1
  1. 1.School of Physical Sciences, Biomedical Diagnostics InstituteDublin City UniversityDublin 9Ireland
  2. 2.Department of NanoBiophotonicsLeibniz Institute of Photonic TechnologyJenaGermany
  3. 3.Department of Bioelectronics, Ecole Nationale Superieure des MinesCMP-EMSE, MOCGardanneFrance

Personalised recommendations