Advertisement

Size-controlled nickel oxide nanoparticle synthesis using mesoporous silicon thin films

  • Joshua S. FainEmail author
  • Jeremy W. Mares
  • Sharon M. Weiss
Research Paper

Abstract

A process for chemically synthesizing size-controllable nickel oxide (NiO) nanoparticles (NPs) within the interior of mesoporous silicon (PSi) thin films is presented. The method is demonstrated to provide control of the average NP size over an order of magnitude, from 9 nm to 128 nm diameter, by fabricating PSi films with mean pore diameters ranging from 32 to 140 nm and annealing at temperatures between 300 and 1100 °C. NiO NPs are readily detached from the PSi films through electrolytic dissolution of the PSi host matrix. Nanocomposite films and NPs are characterized through x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy. Optical absorbance measurements of free NiO NPs in aqueous suspension indicate that the optical bandgap is tuned from 3.65 to 3.9 eV, as expected from the effects of quantum confinement. This synthesis process is amenable to the batch fabrication of a wide variety of metal oxide NPs at temperatures up to 1000 °C with sizes below 100 nm. The method is advantageous over conventional chemical synthesis techniques as it facilitates control of the resulting NP size across a wide range and also permits high-temperature annealing while precluding extended crystallite formation. Furthermore, the use of a PSi template enables direct integration of nanoparticulate metal oxide into Si-based, on-chip applications. NiO was selected here as the model system to demonstrate this technique due to its numerous applications including energy storage and memristor technologies.

Keywords

Nickel oxide Nanoparticles Porous silicon Sol–gel Nanoscale pores 

Notes

Acknowledgments

This work was supported in part by the National Science Foundation (DMR-1207019). The authors thank J. Keum for assistance with x-ray diffraction measurements and J. R. McBride for assistance with EDX mapping. X-ray diffraction was performed at the Center for Nanophase Materials Sciences, which is a DOE Office of User Science Facility. All other material characterization, including TEM (NSF EPS 1004083), was performed at the Vanderbilt Institute of Nanoscale Science and Engineering. J. S. Fain acknowledges support from a National Science Foundation Graduate Fellowship.

References

  1. Ai L, Guojia F et al (2008) Influence of substrate temperature on electrical and optical properties of p-type semitransparent conductive nickel oxide thin films deposited by radio frequency sputtering. Appl Surf Sci 254:2401–2405. doi: 10.1016/j.apsusc.2007.09.051 CrossRefGoogle Scholar
  2. Arico AS, Bruce P, Scrosati B, Tarascon J-M, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377. doi: 10.1038/nmat1368 CrossRefGoogle Scholar
  3. Banerjee N, Krupanidhi SB (2010) Synthesis, structural characterization and formation mechanism of giant-dielectric CaCu3Ti4O12 nanotubes. Nat Sci 2:688–693. doi: 10.4236/ns.2010.27085 Google Scholar
  4. Boutwell RC, Wei M, Scheurer A, Mares JW, Schoenfeld WV (2012) Optical and structural properties of NiMgO thin films formed by sol–gel spin coating. Thin Solid Films 520:4302–4304. doi: 10.1016/j.tsf.2012.02.065 CrossRefGoogle Scholar
  5. Carnes CL, Stipp J, Klabunde KJ, Bonevich J (2002) Synthesis, characterization, and adsorption studies of nanocrystalline copper oxide and nickel oxide. Langmuir 18:1352–1359. doi: 10.1021/la010701p CrossRefGoogle Scholar
  6. Choi J-M, Seongil I (2005) Ultraviolet enhanced Si-photodetector using p-NiO films. Appl Surf Sci 244:435–438. doi: 10.1016/j.apsusc.2004.09.152 CrossRefGoogle Scholar
  7. Dharmaraj N, Prabu P, Nagarajan S, Kim CH, Park JH, Kim HY (2006) Synthesis of nickel oxide nanoparticles using nickel acetate and poly(vinyl acetate) precursor. Mater Sci Eng B 128:111–114. doi: 10.1016/j.mseb.2005.11.021 CrossRefGoogle Scholar
  8. Fox M (2001) Optical properties of solids. Oxford University Press, OxfordGoogle Scholar
  9. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50. doi: 10.1002/smll.200500261 CrossRefGoogle Scholar
  10. Ghosh M, Biswas K, Sundaresan A, Rao CNR (2006) MnO and NiO nanoparticles: synthesis and magnetic properties. J Mater Chem 16:106–111. doi: 10.1039/b511920k CrossRefGoogle Scholar
  11. Hooker PD, Klabunde KJ (1993) Reaction of nickel atoms with molton salts. A new approach to the synthesis of nanoscale metal, metal oxide, and metal carbide particles. Chem Mater 5:1089–1093. doi: 10.1021/cm00032a011 CrossRefGoogle Scholar
  12. Jones CF, Segall RL, Smart RSC, Turner PS (1977) Semiconducting oxides: the effect of prior annealing temperature on dissolution kinetics of nickel oxide. J Chem Soc Faraday Trans 1(73):1710–1720. doi: 10.1039/F19777301710 CrossRefGoogle Scholar
  13. Lee M-J, Han S et al (2009) Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett 9:1476–1481. doi: 10.1021/n1803387 CrossRefGoogle Scholar
  14. Li D, Shi D, Liu Z, Liu H, Guo Z (2013) TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries. J Nanopart Res 15:1674. doi: 10.1007/s11051-013-1674-6 CrossRefGoogle Scholar
  15. Lin Y, Xie T, Cheng B, Geng B, Zhang L (2003) Ordered nickel oxide nanowire arrays and their optical absorption properties. Chem Phys Lett 380:521–525. doi: 10.1016/j.cplett.2003.09.066 CrossRefGoogle Scholar
  16. Loudon JC (2012) Antiferromagnetism in NiO observed by transmission electron diffraction. Phys Rev Lett 109:267204. doi: 10.1103/PhysRevLett.109.267204 CrossRefGoogle Scholar
  17. Lu YM, Hwang WS, Yang JS, Chuang HC (2002) Properties of nickel oxide thin films deposited by RF reactive magnetron sputtering. Thin Solid Films 420–421:54–61. doi: 10.1016/S0040-6090(02)00654-5 CrossRefGoogle Scholar
  18. Maklouf SA, Parker FT, Spada FE, Berkowitz AE (1997) Magnetic anomalies in NiO nanoparticles. J Appl Phys 81:5561–5563. doi: 10.1063/1.364661 CrossRefGoogle Scholar
  19. Mares JW, Fain JS, Weiss SM (2013) Variable conductivity of nanocomposite nickel oxide/porous silicon. Phys Rev B 88:075307. doi: 10.1103/PhysRevB.88.075307 CrossRefGoogle Scholar
  20. Mendoza-Galvan A, Vidales-Hurtado MA, Lopez-Beltran AM (2009) Comparison of the optical and structural properties of nickel oxide-based thin films obtained by chemical bath and sputtering. Thin Solid Films 517:3115–3120. doi: 10.1016/j.tsf.2008.11.094 CrossRefGoogle Scholar
  21. Ortega D, Hernandez-Garrido JC, Blanco-Andujar C, Garitaonandia JS (2013) Suppression and enhancement of the ferromagnetic response in Fe-doped ZnO nanoparticles by calcination of organic nitrogen, phosphorus, and sulfur compounds. J Nanopart Res 15:2120. doi: 10.1007/s11051-013-2120-5 CrossRefGoogle Scholar
  22. Rasband WS (1997–2014) ImageJ. U.S. National Institutes of Health. Bethesda, Maryland. http://imagej.nih.gov/ij/
  23. Richardson JT, Milligan WO (1956) Magnetic properties of colloidal nickelous oxide. Phys Rev 102:1289–1294. doi: 10.1103/PhysRev.102.1289 CrossRefGoogle Scholar
  24. Richardson JT, Yiagas DI, Turk B, Forster K, Twigg MV (1991) Origin of superparamagnetism in nickel oxide. J Appl Phys 70:6977–6982. doi: 10.1063/1.349826 CrossRefGoogle Scholar
  25. Sailor MJ (2012) Porous silicon in practice. Wiley-VCH, WeinheimGoogle Scholar
  26. Sasi B, Gopchandran KG (2007) Nanostructured mesoporous nickel oxide thin films. Nanotechnology 18:115613. doi: 10.1088/0957-4484/18/11/115613 CrossRefGoogle Scholar
  27. Srinivasan V, Weidner JW (1997) An electrochemical route for making porous nickel oxide electrochemical capacitors. J Electrochem Soc 144:L210–L213. doi: 10.1149/1.1837859 CrossRefGoogle Scholar
  28. Srinivasan V, Weidner JW (2000) Studies on the capacitance of nickel oxide films: effect of heating temperature and electrolyte concentration. J Electrochem Soc 147:880–885. doi: 10.1149/1.1393286 CrossRefGoogle Scholar
  29. Tiwari SD, Rajeev KP (2005) Signatures of spin-glass freezing in NiO nanoparticles. Phys Rev B 72:104433. doi: 10.1103/PhysRevB.72.104433 CrossRefGoogle Scholar
  30. Varanasi CV, Leedy KD, Tomich DH, Subramanyam G, Look DC (2009) Improved photoluminescence of vertically aligned ZnO nanorods grown on BaSrTiO3 by pulsed laser deposition. Nanotechnology 20:385706. doi: 10.1088/0957-4484/20/38/385706 CrossRefGoogle Scholar
  31. Wakefield G, Dobson PJ, Foo YY, Loni A, Simons A, Hutchison JL (1997) The fabrication and characterization of nickel oxide films and their application as contacts to polymer/porous silicon electroluminescent devices. Semicond Sci Technol 12:1304–1309. doi: 10.1088/0268-1242/12/10/019 CrossRefGoogle Scholar
  32. Wang C-B, Gau G-Y, Gau S-J, Tang C-W, Bi J-L (2005a) Preparation and characterization of nanosized nickel oxide. Catal Lett 101:241–247. doi: 10.1007/s10562-005-4899-x CrossRefGoogle Scholar
  33. Wang X, Song J et al (2005b) Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibers. Nanotechnology 16:37–39. doi: 10.1088/0957-4484/16/1/009 CrossRefGoogle Scholar
  34. Wang J, Wei L et al (2012) Preparation of high aspect ratio nickel oxide nanowires and their gas sensing devices with fast response and high sensitivity. J Mater Chem 22:8327–8335. doi: 10.1039/c2jm16934g CrossRefGoogle Scholar
  35. Wu M-S, Huang C-Y, Lin K-H (2009) Electrophoretic deposition of nickel oxide electrode for high-rate electrochemical capacitors. J Power Sources 186:557–564. doi: 10.1016/j.jpowsour.2008.10.049 CrossRefGoogle Scholar
  36. Wu M-S, Wang M-J, Jow J-J (2010) Fabrication of porous nickel oxide film with open macropores by electrophoresis and electrodeposition for electrochemical capacitors. J Power Sources 195:3950–3955. doi: 10.1016/j.jpowsour.2009.12.136 CrossRefGoogle Scholar
  37. Yan X, Tong X et al (2014) Synthesis of hollow nickel oxide nanotubes by electrospinning with structurally enhanced lithium storage properties. Mater Lett 136:74–77. doi: 10.1016/j.matlet.2014.07.183 CrossRefGoogle Scholar
  38. Yuan C, Zhang X, Su L, Gao B, Shen L (2009) Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J Mater Chem 19:5772–5777. doi: 10.1039/b902221j CrossRefGoogle Scholar
  39. Yuan L, Meng S, Zhou Y, Yue Z (2013) Controlled synthesis of anatase TiO2 nanotube and nanowire arrays via AAO template-based hydrolysis. J Mater Chem A 1:2552–2557. doi: 10.1039/c2ta00709f CrossRefGoogle Scholar
  40. Zheng MJ, Zhang LD, Li GH, Shen WZ (2002) Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem Phys Lett 363:123–128. doi: 10.1016/S0009-2614(02)01106-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Joshua S. Fain
    • 1
    Email author
  • Jeremy W. Mares
    • 1
  • Sharon M. Weiss
    • 1
    • 2
  1. 1.Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleUSA
  2. 2.Department of PhysicsVanderbilt UniversityNashvilleUSA

Personalised recommendations