Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles

  • Pierson Rathinaraj
  • Kyubae Lee
  • Yuri Choi
  • Soo-Young Park
  • Oh Hyeong Kwon
  • Inn-Kyu KangEmail author
Research Paper


Mercaptosuccinic acid (M)-conjugated gold nanoparticles (GM) were prepared and characterized by transmission electron microscope and dynamic light scattering. M was used to improve the monodispersity and non-specific intracellular uptake of nanoparticles. Lactobionic acid (L) was subsequently conjugated to the GM to target preferentially HepG2 cells (liver cancer cells) that express asialoglycoprotein receptors (ASGPR) on their membrane surfaces and facilitate the transit of nanoparticles across the cell membrane. The mean size of lactobionic acid-conjugated gold nanoparticle (GL) was approximately 10 ± 0.2 nm. Finally, the Atto 680 dye (A6) was coupled to the nanoparticles to visualize their internalization into HepG2 cells. The interaction of surface-modified gold nanoparticles with HepG2 cells was studied after culturing cells in media containing the GM or L-conjugated GM (GL).


Lactobionic acid Gold nanoparticles HepG2 cells Intracellular uptake Nanomedicine 



This study was supported by the Basic Research Laboratory Program (No. 2011-0020264) and the General Research Program (2013 R1A1A 2005148) from the Ministry of Education, Science and Technology of Korea.


  1. Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Angew Chem Int Ed 2(1):705–763Google Scholar
  2. Anshup Venkataraman JS, Chandramouli S, Pradeep T (2005) Growth of gold nanoparticles in human cells. Langmuir 21(25):11562–11567CrossRefGoogle Scholar
  3. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria T, oxidants, and aging. Cell 120(4):483–495CrossRefGoogle Scholar
  4. Bale SS, Kwon SJ, Shah DA, Banerjee A, Dordick JS, Kane RS (2010) Nanoparticle-mediated cytoplasmic delivery of proteins to target cellular machinery. ACS Nano 4(3):1493–1500CrossRefGoogle Scholar
  5. Chaterjee DK, Rufalhah AJ, Zhang Y, Tolcher A (2008) Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29(7):937–943CrossRefGoogle Scholar
  6. Cho CS, Park IK, Cho CS (2008) Galactosylated poly(ethylene gly-col)-Chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting. J Control Release 131(2):150–157CrossRefGoogle Scholar
  7. Crespo P (2004) Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles. Phys Rev Lett 93(1):872041–872044Google Scholar
  8. Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(1):1067–1070CrossRefGoogle Scholar
  9. El- Sayed IH, Huang X, El- Sayed MA, Tolcher A, Dordick JS, Alabi CA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239(1):129–135CrossRefGoogle Scholar
  10. Gan J, Jiang S, Yang Y (2008) Immobilization of homing peptide on magnetite nanoparticles and its specificity in vitro. J Biomed Mater Res A 27(1):468–476Google Scholar
  11. Geelan T, Nicoloy K, Paulis LEM, Yeo SY, Strijkers GJ (2012) Internalization of paramagnetic phosphatidylserine-containing liposomes by macrophages. J Nano Biotechnol 10(37):1–11Google Scholar
  12. Gomes PF, Godoy MPF, Veloso AB, madhireira JR (2007) Exciton binding energy in type II quantum dots. Phys Status Solidi B 4(2):385–388CrossRefGoogle Scholar
  13. Han G, You CC, Kim BJ, Forbes R, Turingan RS, Martin CT (2006) Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew Chem Int Ed 45(19):3165–3169CrossRefGoogle Scholar
  14. Hong R, Han G, Fernandez J, Kim MB, Forbes NS, Rotello VM (2006) Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc 128(4):1078–1089CrossRefGoogle Scholar
  15. Hong YK, Hong SM, Kim JS, Im JH, Park SW (2007) Encapsulation of CdSe/Zns quantum dots in poly(ethylene glycol)-poly(d,l-lactide) micelle for biomedical imaging and detection. Macromol Res 15(4):330–336CrossRefGoogle Scholar
  16. Hvkkinen H (2003) Electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. Angew Chem Int Ed 42(11):1297–1300CrossRefGoogle Scholar
  17. Jiang S, Gnanasammandhan MK, Zhang Y (2010) Optical imaging-guided cancer therapy with fluorescent. J R Soc Interface 7(42):3–18CrossRefGoogle Scholar
  18. Kamuruzzaman Selim KM, Xing ZC, Choi MJ, Chang Y, Guo H, Kang IK (2011) Reduced cytotoxicity of Insulin-immobilized CdS quantum dots using PEG as a spacer. Nanoscale Res Lett 6:528–536CrossRefGoogle Scholar
  19. Kim EM, Jeong HJ, Moon MH (2005) Asialoglycoprotein receptor targeted gene delivery using galactosylated polyethylenimine-graft-poly(ethylene glycol): in vitro and in vivo studies. J Control Release 108(2–3):557–567CrossRefGoogle Scholar
  20. Koo T, Borah JS, Park Xing ZC, Moon SM, Jeoung Y, Kang IK (2013) Immobilization of pamidronic acids on the nanotube surface of titanium discs and their interaction with bone cells. Nanoscale Res Lett 8(1):124–133CrossRefGoogle Scholar
  21. Lee CM, Jeong HJ, Kim EM, Kim DW, Lim ST, Kim HT (2009) Superparamagnetic iron oxide nanoparticles as a dual imaging probe for targeting hepatocytes in vivo. Magn Reson Med 62(6):1440–1446CrossRefGoogle Scholar
  22. Li H, Xu T, Chen J, Zhou H, Liu H (2003) Preparation and characterization of hydrogenated diamond-like carbon films in a dual DC-RF plasma system. J Phys D 36(24):3183–3190CrossRefGoogle Scholar
  23. Lim CK (2010) Chemiluminescence-generating nanoreactor formulation for near-infrared imaging of hydrogen peroxide and glucose level in vivo. Adv Funct Mater 20(16):2644–2648CrossRefGoogle Scholar
  24. Makhsin SR, Razak KA, Noordin R, Zakaria ND, Chun TS (2012) The effects of size and synthesis methods of gold nanoparticle-conjugated MαHIgG4 for use in an immunochromatographic strip test to detect brugian filariasis. Nanotechnology 23:495719CrossRefGoogle Scholar
  25. Mannervik B (1987) The enzymes of glutathione metabolism: an overview. Biochem Soc Trans 15(1):717–718Google Scholar
  26. Mikako Celeste AS, Regino Peter, Choyke T (2009) In vivo target-specific activable near-infrared optical labeling of humanized monoclonal antibodies. Mol Cancer Ther 8(1):232–239CrossRefGoogle Scholar
  27. Pan J, Feng SS (2009) Targeting and imaging cancer cells by folate-decorated, quantum dots (QDs)—loaded nanoparticles of biodegradable polymers. Biomaterials 30(6):1176–1183CrossRefGoogle Scholar
  28. Peyser LA, Vinson AE, Bartko AP, Dickson RM (2001) Photoactivated fluorescence from individual silver nanoclusters. Science 291(5501):103–106CrossRefGoogle Scholar
  29. Pierson R, Lee KB, Park SY, Kang IK (2015) Targeted images of KB cells using folate-conjugated gold nanoparticles. Nanoscale Res Lett 10:5CrossRefGoogle Scholar
  30. Roma´n-Vela´zquez CE, Noguez C, Garzo´n IL (2003) Circular dichroism simulated spectra of chiral gold nanoclusters: a dipole approximation. J Phys Chem 107(44):12035–12038CrossRefGoogle Scholar
  31. Scott D, Toney M, Muzikar M (2008) Harnessing the mechanism of glutathione reductase for synthesis of active site bound metallic nanoparticles and electrical connection to electrodes. J Am Chem Soc 130(3):865–874CrossRefGoogle Scholar
  32. Selim KM, Park MJ, Han SJ, Choi MJ, Lee JH, Xing ZC, Kang IK (2006) surface modification of magnetites using maltrotonic acid and folic acid for molecular imaging. Macromol Res 14(6):646–653CrossRefGoogle Scholar
  33. Shen Z, Wei W, Tanaka H, Kohama K, Ma G, Dobashi T (2011) A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy. Pharmacol Res 64(4):410–419CrossRefGoogle Scholar
  34. Shi Z, Neoh KG, Kang ET, Wang SC, Wang W (2009) Carboxymethyl chitosan-modified supermagnetic iron oxide nanoparticles for magnetic resonance imaging of stem cells. Appl Mater Interfaces 1(2):328–335CrossRefGoogle Scholar
  35. Wang CS (2011) Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Ange Chem Int Ed 50(49):11644–11648CrossRefGoogle Scholar
  36. Xing ZC, Park MJ, Han SJ, Choi MJ, Lee BH, Kang IK (2011) Intracellular uptake of magnetite nanoparticles conjugated with RGDS-peptide. Macromol Res 19(9):897–903CrossRefGoogle Scholar
  37. Yamamura M, Camilo RL, Sampaio LC (2004) Preparation and characterization of (3aminopropyl) triethosysilane-coated magnetite nanoparticles. J Magn Magn Mater 1(1):210–217CrossRefGoogle Scholar
  38. Yang YS, Chen S (2003) Surface manipulation of the electronic energy of subnanometer-sized gold clusters: an electrochemical and spectroscopic investigation. Nano Lett 3(1):75–79CrossRefGoogle Scholar
  39. Yang Y, Zhang Z, Chen L, Gu W, Li Y (2010) Galactosylated poly(2-(2-aminoethyoxy)ethoxy)phosphazene/DNA complex nanoparticles: in vitro and in vivo evaluation for gene delivery. Biomacromolecules 11(4):927–933CrossRefGoogle Scholar
  40. Zheng J, Dickson RM (2002) Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124(47):13982–13983CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Pierson Rathinaraj
    • 1
    • 2
  • Kyubae Lee
    • 1
  • Yuri Choi
    • 1
  • Soo-Young Park
    • 1
  • Oh Hyeong Kwon
    • 3
  • Inn-Kyu Kang
    • 1
    Email author
  1. 1.School of Applied Chemical Engineering, Graduate SchoolKyungpook National UniversityDaeguSouth Korea
  2. 2.Institute of Biomedical TechnologiesAuckland University of TechnologyAucklandNew Zealand
  3. 3.Department of Polymer Science and EngineeringKumoh National Institute of TechnologyGumiSouth Korea

Personalised recommendations