Chitosan: poly(N-vinylpyrrolidone-alt-itaconic anhydride) nanocapsules—a promising alternative for the lung cancer treatment

  • Delia Mihaela Raţă
  • Jean-François Chailan
  • Cătălina Anişoara Peptu
  • Marcel Costuleanu
  • Marcel Popa
Research Paper


This study reports the preparation of novel polymeric nanocapsules based on a natural polymer, chitosan and a synthetic one, poly(N-vinylpyrrolidone-alt-itaconic anhydride) [(poly(NVPAI)] using an interfacial condensation technique. The infrared spectroscopy studies confirmed the crosslinking through the presence of amide bonds, formed between the two polymers chains. The diameter of nanocapsules was found in the range of 126–214 nm and it was determined by dynamic light scattering method. Morphological characterization demonstrated their nano size, the spherical shape of the nanocapsules and the formation of hollow particles. The nanocapsules presented good swelling capacity in aqueous solutions. 5-Fluorouracil (5-FU) loading and release capacity was studied, the processes being controlled by the drug diffusion through the polymeric membrane. The obtained results were encouraging, showing that 5-FU-loaded nanocapsules had 70 % higher apoptotic effect on A549 tumour cells than the drug in free state or mixed with the nanocapsules.


Polymeric nanocapsules Interfacial condensation 5-Fluorouracil Apoptotic effect Lung cancer Nanomedicine Health effects 


  1. Anton N, Benoit JP, Saulnier P (2008) Design and production of nanoparticles formulated from nanoemulsion templates—a review. J Control Release 128:185–199. doi: 10.1016/j.jconrel.2008.02.007 CrossRefGoogle Scholar
  2. Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23:H18–H40. doi: 10.1002/adma.201100140 CrossRefGoogle Scholar
  3. Berrabah M, Andre D, Verite P, Zahidi A, Lafont O (2004) Aminoglutethimide included in nanocapsules suspension: comparison of GC–MS and HPLC methods for control. J Pharm Biomed Anal 35:761–768. doi: 10.1016/j.jpba.2004.02.030 CrossRefGoogle Scholar
  4. Blouza IL, Charcosset C, Sfar S, Fessi H (2006) Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use. Int J Pharm 325:124–131. doi: 10.1016/j.ijpharm.2006.06.022 CrossRefGoogle Scholar
  5. Boonsongrit Y, Mueller BW, Mitrevej A (2008) Characterization of drug–chitosan interaction by 1H NMR, FTIR and isothermal titration calorimetry. J Pharm Biopharm 69:388–395. doi: 10.1016/j.ejpb.2007.11.008 CrossRefGoogle Scholar
  6. Cismaru L, Hamaide T, Popa M (2007) Itaconic anhydride based amphiphilic copolymers: synthesis, characterization and stabilization of carboxyl functionalized, PEGylated nanoparticles. Eur Polymer J 43:4843–4851. doi: 10.1016/j.eurpolymj.2007.09.023 CrossRefGoogle Scholar
  7. Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C (1993) A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197:40–45. doi: 10.1006/bbrc.1993.2438 CrossRefGoogle Scholar
  8. Das J, Das S, Samadder A, Bhadra K, Khuda-Bukhsh AR (2012) Poly (lactide-co-glycolide) encapsulated extract of Phytolaccadecandra demonstrates better intervention against induced lung adenocarcinoma in mice and on A549 cells. Eur J Pharm Sci 47:313–324. doi: 10.1016/j.ejps.2012.06.018 CrossRefGoogle Scholar
  9. Díaz MR, Vivas-Mejia PE (2013) Nanoparticles as drug delivery systems in cancer medicine: emphasis on RNAi-containing nanoliposomes. Pharmaceuticals 6:1361–1380. doi: 10.3390/ph6111361 CrossRefGoogle Scholar
  10. Garbuzenko OB, Mainelis G, Taratula O, Minko T (2014) Inhalation treatment of lung cancer: the influence of composition, size and shape of nanocarriers on their lung accumulation and retention. Cancer Biol Med 11:44–55. doi: 10.7497/j.issn.2095-3941.2014.01.004 Google Scholar
  11. Garcion E, Lamprecht A, Heurtault B, Paillard A, Aubert-Pouessel A, Denizot B, Menei P, Benoît JP (2006) A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol Cancer Ther 5:1710–1722CrossRefGoogle Scholar
  12. Hubbs AF, Mercer RR, Benkovic SA, Harkema J, Sriram K, Schwegler-Berry D, Goravanahally MP, Nurkiewicz TR, Castranova V, Sargent LM (2011) Nanotoxicology—a pathologist’s perspective. Toxicol Pathol 39:301–324. doi: 10.1177/0192623310390705 CrossRefGoogle Scholar
  13. Irache JM, Esparza I, Gamazo C, Agueros M, Espuelas S (2011) Nanomedicine: novel approaches in human and veterinary therapeutics. Vet Parasitol 180:47–71. doi: 10.1016/j.vetpar.2011.05.028 CrossRefGoogle Scholar
  14. Iurea DM, Popa M, Chailan J-F, Tamba BI, Tudorancea I, Peptu CA (2013) Ibuprofen-loaded chitosan/poly(maleic anhydride-alt-vinyl acetate) submicronic capsules for pain treatment. J Bioact Compat Polym 28:368–384. doi: 10.1177/0883911513490336 Google Scholar
  15. Kalantarian P, Najafabadi AR, Haririan I, Vatanara A, Yamini Y, Darabi M, Gilani K (2010) Preparation of 5-fluorouracil nanoparticles by supercritical antisolvents for pulmonary delivery. Int J Nanomed 5:763–770. doi: 10.2147/IJN.S12415 CrossRefGoogle Scholar
  16. Lamprecht A, Benoit JP (2006) Etoposide nanocarriers suppress glioma cell growth by intracellular drug delivery and simultaneous P-glycoprotein inhibition. J Control Release 112:208–213. doi: 10.1016/j.jconrel.2006.02.014 CrossRefGoogle Scholar
  17. Long JT, Cheang TY, Zhuo SY, Zeng RF, Dai QS, Li HP, Fang S (2014) Anticancer drug-loaded multifunctional nanoparticles to enhance the chemotherapeutic efficacy in lung cancer metastasis. J Nanobiotechnol 12:37. doi: 10.1186/s12951-014-0037-5 CrossRefGoogle Scholar
  18. Mi KY, Jinho P, Sangyong J (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2:3–44. doi: 10.7150/thno.3463 CrossRefGoogle Scholar
  19. Minko T, Rodriguez-Rodriguez L, Pozharov V (2013) Nanotechnology approaches for personalized treatment of multidrug resistant cancers. Adv Drug Deliv Rev 65:1880–1895. doi: 10.1016/j.addr.2013.09.017 CrossRefGoogle Scholar
  20. Mora-Huertasa CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142. doi: 10.1016/j.ijpharm.2009.10.018 CrossRefGoogle Scholar
  21. Nair KL, Jagadeeshan S, Nair SA, Kumar GS (2011) Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int J Nanomed 6:1685–1697. doi: 10.2147/IJN.S20165 Google Scholar
  22. Okamoto H, Shiraki K, Yasuda R, Danjo K, Watanabe Y (2011) Chitosan-interferon-β gene complex powder for inhalation treatment of lung metastasis in mice. J Control Release 150:187–195. doi: 10.1016/j.jconrel.2010.12.006 CrossRefGoogle Scholar
  23. Roa WH, Azarmi S, Kamal Al-Hallak MHD, Finlay WH, Magliocco AM, Löbenberg R (2010) Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J Control Release 150:49–55. doi: 10.1016/j.jconrel.2010.10.035 CrossRefGoogle Scholar
  24. Schaffazick SR, Siqueira IR, Badejo AS, Jornada DS, Pohlmann AR, Netto CA, Guterres SS (2008) Incorporation in polymeric nanocapsules improves the antioxidant effect of melatonin against lipid peroxidation in mice brain and liver. Eur J Pharm Biopharm 69:64–71. doi: 10.1016/j.ejpb.2007.11.010 CrossRefGoogle Scholar
  25. Sukumar UK, Bhushan B, Dubey P, Matai I, Sachdev A, Packirisamy G (2013) Emerging applications of nanoparticles for lung cancer diagnosis and therapy. Int Nano Lett 3:45. doi: 10.1186/2228-5326-3-45 CrossRefGoogle Scholar
  26. Tewa-Tagnea P, Briancon S, Fessi H (2007) Preparation of redispersible dry nanocapsules by means of spray-drying: development and characterization. Eur J Pharm Sci 30:124–135CrossRefGoogle Scholar
  27. Yang JM, Su WY, Leu TL, Yang MC (2004) Evaluation of chitosan/PVA blended hydrogel membranes. J Membr Sci 236:39–51. doi: 10.1016/j.memsci.2004.02.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Delia Mihaela Raţă
    • 2
  • Jean-François Chailan
    • 3
  • Cătălina Anişoara Peptu
    • 1
  • Marcel Costuleanu
    • 4
  • Marcel Popa
    • 1
    • 2
    • 5
  1. 1.Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection“Gheorghe Asachi” Technical University of IasiIasiRomania
  2. 2.Faculty of Medical Dentistry, „Academician Ioan Haulică” Research Institute„Apollonia” University of IasiIasiRomania
  3. 3.« Matériaux-Polymères-Interfaces-Environnement Marin (MAPIEM) LaboratoryUniversity of Sud Toulon-VarLa Garde CedexFrance
  4. 4.Department of General Pathology, Faculty of Dental MedicineUniversity of Medicine and Pharmacy “Grigore T. Popa”- IaşiIasiRomania
  5. 5.Academy of Romanian ScientistsBucharestRomania

Personalised recommendations