Advertisement

Synthesis and characterization of CoFe2O4 magnetic nanotubes, nanorods and nanowires. Formation of magnetic structured elastomers by magnetic field-induced alignment of CoFe2O4 nanorods

  • P. Soledad Antonel
  • Cristiano L. P. Oliveira
  • Guillermo A. Jorge
  • Oscar E. Perez
  • A. Gabriela LeyvaEmail author
  • R. Martín NegriEmail author
Research Paper

Abstract

Magnetic CoFe2O4 nanotubes, nanorods and nanowires were synthesized by the template method. The materials are highly crystalline and formed by compactly packed ceramic particles whose equivalent size diameter depends on the nanostructure type. Nanotubes and nanorods present the remarkable characteristic of having very large coercive fields (1000–1100 Oe) in comparison with nanoparticles of the same crystallite size (400 Oe) while keeping similar saturation magnetization (53–55 emu/g). Nanorods were used as filler material in polydimethylsiloxane elastomer composites, which were structured by curing in the presence of uniform magnetic field, H curing. In that way the nanorods agglomerate in the cured elastomer, forming needles-like structures (pseudo-chains) oriented in the direction of H curing. SEM analysis show that pseudo-chains are formed by bunches of nanorods oriented in that direction. At the considered filler concentration (1 % w/w), the structured elastomers conserve the magnetic properties of the fillers, that is, high coercive fields without observing magnetic anisotropy. The elastomer composites present strong elastic anisotropy, with compression constants about ten times larger in the direction parallel to the pseudo-chains than in the perpendicular direction, as determined by compression stress–strain curves. That anisotropic factor is about three-four times higher than that observed when using spherical CoFe2O4 nanoparticles or elongated Ni nanochains. Hence, the use of morphological anisotropic structures (nanorods) results in composites with enhanced elastic anisotropy. It is also remarkable that the large elastic anisotropy was obtained at lower filler concentration compared with the above-mentioned systems (1 % w/w vs. 5–10 % w/w).

Keywords

Magnetic nanorods Magnetic nanotubes Structured elastomers Magnetic composites 

Notes

Acknowledgments

PSA, GJ, and RMN are research members of the National Council of Research and Technology (CONICET, Argentina). Financial support was received from the Ministry of Sciences (MINCYT-FONCYT PICT 2011-0377) and University of Buenos Aires (UBACyT 2012-2015 20020110100098). CLPO is supported by FAPESP, CNPq, and INCTFcx, Brazil. The authors thank to the Center of Advanced Microscopy (CMA) at the School of Sciences (UBA) for obtaining the presented images and pictures. AGL thanks to A. Petragalli for obtaining diffraction data and Mg. Mariana Lali (CNEA) for helping with SAED indexs and Ministry of Sciences for the financial support (ANPCyT PICT 2012-1506).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Albrecht O, Zierold R, Allende S, Escrig J, Patzig C, Rauschenbach B, Nielsch K, Görlitz D (2011) Experimental evidence for an angular dependent transition of magnetization reversal modes in magnetic nanotubes. J Appl Phys 109:093910–093914CrossRefGoogle Scholar
  2. Antonel PS, Jorge GA, Perez O, Butera A, Leyva AG, Negri RM (2011) Magnetic and elastic properties of CoFe2O4-PDMS magnetically oriented elastomer nanocomposites. J App Phys 110:43920–43928CrossRefGoogle Scholar
  3. Antonel PS, Negri RM, Leyva AG, Jorge GA (2012) Anisotropy and relaxation processes of uniaxially oriented CoFe2O4 nanoparticles dispersed in PDMS. Physica B 407:3165–3167CrossRefGoogle Scholar
  4. Bance S, Fischbacher J, Schrefl T, Zins I, Rieger G, Cassignol C (2014) Micromagnetics of shape anisotropy based permanent magnets. J Mag Mag Mat 363:121–124CrossRefGoogle Scholar
  5. Bechelany M, Amin A, Brioude A, Cornu D, Miele P (2012) ZnO nanotubes by template-assisted sol–gel route. J Nanopart Res 14:980–986CrossRefGoogle Scholar
  6. Bellino MG, Sacanell JG, Lamas DG, Leyva DG, Walsöe NE (2007) High-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes. J Am Chem Soc 129:3066–3067CrossRefGoogle Scholar
  7. Bica I, Liu YD, Choi HJ (2012) Magnetic field intensity effect on plane electric capacitor characteristics and viscoelasticity of magnetorheological elastomer. Colloid Polym Sci 290:1115–1122CrossRefGoogle Scholar
  8. Butera A, Alvarez N, Jorge GA, Ruiz MM, Mietta JL, Negri RM (2012) Microwave response of anisotropic magnetorheological elastomers: model and experiments. Phys Rev B 86:144424–144428CrossRefGoogle Scholar
  9. Cernea M, Trupina L, Vasile BS, Bartha C, Radu R, Chirila C, Teodorescu A (2014) BiFeO3 doped-BNT-BT0.08 piezoelectric and magnetic nanowires, derived from sol–gel precursor. J Nanopart Res 16:2231–2238CrossRefGoogle Scholar
  10. Chen L, Jerrams S (2011) A rheological model of the dynamic behaviour of magnetorheological elastomers. J Appl Phys 110:013513–013516CrossRefGoogle Scholar
  11. Chen AP, Guslienko KY, Gonzalez J (2010) Magnetization configurations and reversal of thin magnetic nanotubes with uniaxial anisotropy. J Appl Phys 108:083920–083927CrossRefGoogle Scholar
  12. Cheng Q, Sun Z, Meininger GA, Almasri M (2010) Mechanical study of micromachined polydimethylsiloxane elastic microposts. Rev Sci Instrum 81:106104–106106CrossRefGoogle Scholar
  13. Danas K, Kankanala SV, Triantafyllidis N (2012) Experiments and modeling of iron-particle-filled magnetorheological elastomers. J Mech Phys Solids 60:120–138CrossRefGoogle Scholar
  14. Escrig J, Lavín R, Palma JL, Denardin JC, Altbir D, Cortés A, Gómez H (2008) Geometry dependence of coercivity in Ni nanowire arrays. Nanotechnology 19:075713CrossRefGoogle Scholar
  15. Forster H, Bertram N, Wang X, Dittrich R, Schrefl T (2003) Energy barrier and effective thermal reversal volume in columnar grains. J Mag Mag Mat 267:69–79CrossRefGoogle Scholar
  16. Fuentes RO, Muñoz FF, Acuña LM, Leyva AG, Baker RT (2008a) Preparation and characterization of nanostructured gadolinia-doped ceria tubes. J Mater Chem 18:5689–5695CrossRefGoogle Scholar
  17. Fuentes RO, Acuña LM, Zimicz MG, Lamas DG, Sacanell JG, Leyva AG, Baker RT (2008b) Chem Mater 20:7356–7363CrossRefGoogle Scholar
  18. Gajbhiye NS, Srivastava S, Kurian S, Behta BR, Singh VN (2010) Magnetic Field Assisted Hydrothermal Synthesis of CoFe2O4 Nanowires. J Phys Conf Ser 200: 072093Google Scholar
  19. Grobert N, Hsu WK, Zhu YQ, Hare JP, Kroto HW, Walton DRM, Terrones M, Terrones H, Redlich Ph, Rühle M, Escudero R, Morales F (1999) Enhanced magnetic coercivities in Fe nanowires. Appl Phys Lett 75:3363–3364CrossRefGoogle Scholar
  20. Holz A, Scherer C (1994) Topological theory of magnetism in nanostructured ferromagnets. Phys Rev B 50:6209–6232CrossRefGoogle Scholar
  21. Høyer H, Knaapila M, Kjelstrup-Hansen J, Helgesen G (2012) Microelectromechanical strain and pressure sensors based on electric field aligned carbon cone and carbon black particles in a silicone elastomer matrix. J Appl Phys 112:094324–094328CrossRefGoogle Scholar
  22. Hussain ST, Siddiq ASM, Ali S (2011) Iron-doped titanium dioxide nanotubes: a study of electrical, optical, and magnetic properties. J Nanopart Res 13:6517–6525CrossRefGoogle Scholar
  23. Inglis DW (2010) A method for reducing pressure-induced deformation in silicone microfluidics. Biomicrofluidics 4:026504–026511CrossRefGoogle Scholar
  24. Jung JS, Lim JH, Choi KH, Oh SL, Kim YR, Lee SH, Smith DA, Stokes KL, Malkinski L, O’Connor CJ (2005) CoFe2O4 nanostructures with high coercivity. J Appl Phys 97:10F306–10F309Google Scholar
  25. Kinning DJ, Thomas EL (1984) Hard-sphere interactions between spherical domains in diblock copolymers. Macromol 17:1712–1718CrossRefGoogle Scholar
  26. Ko TY, Tsai MH, Lee CS, Sun KW (2012) Electron transport mechanisms in individual cobalt-doped ZnO nanorods. J Nanopart Res 14:1253–1265CrossRefGoogle Scholar
  27. Kohli S, McCurdy PR, Johnson DC, Das J, Prieto AL, Rithner CD, Fisher ER (2010) Template-assisted chemical vapor deposited spinel ferrite nanotubes. J Phys Chem C 114:19557–19561CrossRefGoogle Scholar
  28. Landa RA, Antonel PS, Ruiz MM, Perez OE, Butera A, Jorge GA, Oliveira CLP, Negri RM (2013) Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains. J App Phys 114:213912–213922CrossRefGoogle Scholar
  29. Landeros P, Núñez AS (2010) Domain wall motion on magnetic Nanotubes. J Appl Phys 108:033917–033926CrossRefGoogle Scholar
  30. Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured. Mater Chem Mater 8:1770–1783CrossRefGoogle Scholar
  31. Levy P, Leyva AG, Troiani H, Sanchez RD (2003) Nanotubes of rare earth manganese oxide. Appl Phys Lett 83:5247–5249CrossRefGoogle Scholar
  32. Leyva AG, Stoliar P, Rosenbusch M, Levy P, Curiale J, Troiani H, Sanchez RD (2004) Synthesis route for obtaining manganese oxide based nanostructures. Phys B 354:158–160CrossRefGoogle Scholar
  33. Leyva AG, Curiale J, Troiani H, Rosenbusch M, Levy P, Sánchez RD (2006) Nanoparticles of La1−xSrxMnO3 (x = 0.33, 0.20) assembled into hollow nanostructures for solid oxide fuel cells. disclosing materials at the nanoscale. Adv Sci Technol 51:54–59CrossRefGoogle Scholar
  34. Lorenzo D, Fragouli D, Bertoni G, Innocenti C, Anyfantis GC, Cozzoli PD, Cingolani R (2012) Formation and magnetic manipulation of periodically aligned microchains in thin plastic membranes. J Appl Phys 112:083927–083934CrossRefGoogle Scholar
  35. Macias JD, Ordonez-Miranda J, Alvarado-Gil JJ (2012) Resonance frequencies and Young’s modulus determination of magnetorheological elastomers using the photoacoustic technique. J Appl Phys 112:124910–124917CrossRefGoogle Scholar
  36. Mietta JL, Ruiz MM, Antonel PS, Perez OE, Butera A, Jorge GA, Negri RM (2012) Anisotropic magnetoresistance and piezoresistivity in structured Fe3O4–silver particles in PDMS elastomers at room temperature. Langmuir 28:6985–6996CrossRefGoogle Scholar
  37. Mietta JL, Jorge GA, Perez OE, Maeder T, Negri RM (2013) Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity. Sens Actuat A 192:34–41CrossRefGoogle Scholar
  38. Mietta JL, Jorge GE, Negri RM (2014) A flexible strain gauge exhibiting reversible piezoresistivity based on an anisotropic magnetorheological polymer. Smart Mater Struct 23:85026–85038CrossRefGoogle Scholar
  39. Mordina B, Tiwari RJ, Setua DK, Sharma A (2014) Magnetorheology of polydimethylsiloxane elastomer/FeCo3 nanocomposite. J Phys Chem C 118:25684–25703CrossRefGoogle Scholar
  40. Negri RM, Rodriguez SD, Bernik DL, Molina FV, Pilosof A, Pérez OE (2010) A model for the dependence of the electrical conductance with the applied stress in insulating-conducting composites. J Appl Phys 107:113703–113714CrossRefGoogle Scholar
  41. Pereira A, Gallardo C, Espejo AP, Briones J, Vivas LG, Vázquez M, Denardin JC, Escrig J (2013) Tailoring the magnetic properties of ordered 50-nm diameter CoNi nanowire arrays. J Nanopart Res 15:2041–2048CrossRefGoogle Scholar
  42. Ruiz MM, Antonel PS, Perez OE, Negri RM, Jorge GE (2012) Structural and magnetic properties of Fe2−xCoSmxO4-nanoparticles and Fe2−xCoSmxO4–PDMS magnetoelastomers as a function of Sm content. J Mag Mag Mater 327:11–19CrossRefGoogle Scholar
  43. Ruiz MM, Marchi MC, Perez OE, Jorge GE, Mirta F, Norma D’Accorso, Martín Negri R (2015) Structured elastomeric submillimeter films displaying magneto and piezo resistivity. J Pol Sci B. doi: 10.1002/polb.23672
  44. Semeriyanov F, Chervanyov AI, Jurk R, Subramaniam K, Konig S, Roscher M, Das A, Stockelhuber KW, Heinrich GJ (2013) Non-monotonic dependence of the conductivity of carbon nanotube-filled elastomers subjected to uniaxial compression/decompression. J Appl Phys 113:103706–103712CrossRefGoogle Scholar
  45. Shahrivar K, de Vicente J (2013) Where physics meets chemistry meets biology for fundamental soft matter research. Soft Matter 9:11451–11456CrossRefGoogle Scholar
  46. Teixeira J (1998) Small-angle scattering by fractal systems. J Appl Crystallogr 21:781–785CrossRefGoogle Scholar
  47. Thang PD, Rijnders G, Blank DHA (2007) Stress-induced magnetic anisotropy of CoFe2O4 thin films using pulsed laser deposition. J Mag Mag Mater 310:2621–2623CrossRefGoogle Scholar
  48. Tong J, Simmons CA, Yu SJ (2008) Precision patterning of PDMS membranes and applications. Micromech Microeng 18:037004–037007CrossRefGoogle Scholar
  49. Tsai MC, Lin GT, Chiu HT, Lee CY (2008) Synthesis of zirconium dioxide nanotubes, nanowires, and nanocables by concentration dependent solution deposition. J Nanopart Res 10:863–869CrossRefGoogle Scholar
  50. Usov NA, Serebryakova ON (2014) The peculiarities of magnetization reversal process in magnetic nanotube with helical anisotropy. J Appl Phys 116:133902–133909CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • P. Soledad Antonel
    • 1
  • Cristiano L. P. Oliveira
    • 2
  • Guillermo A. Jorge
    • 3
  • Oscar E. Perez
    • 4
  • A. Gabriela Leyva
    • 5
    Email author
  • R. Martín Negri
    • 1
    Email author
  1. 1.Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE)Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  2. 2.Grupo de Fluidos Complexos, Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  3. 3.Instituto de CienciasUniversidad Nacional de General SarmientoBuenos AiresArgentina
  4. 4.Departamento de Industrias, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  5. 5.Grupo de Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (Argentina) and Escuela de Ciencia y TecnologíaUniversidad Nacional de San MartínSan MartínArgentina

Personalised recommendations