Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO2 for efficient photocatalytic H2 production under visible-light irradiation

  • Jinwen Shi
  • Xiangjiu Guan
  • Zhaohui Zhou
  • Haipei Liu
  • Liejin Guo
Research Paper


Nanosheet (with around 20 nm in thickness)-stacked hollow-sphere TiO2 was synthesized via a modified solvothermal reaction for different times followed by calcination treatment at different temperatures. After surface modification by different cations (H+ or Fe3+) and further sensitization by Eosin Y, the obtained photocatalysts achieved remarkably enhanced H2-production activity (about 4.2 times of that for Eosin Y-sensitized P25) and stability under visible-light irradiation. The improved photocatalytic performance was synergistically caused by the enhanced Eosin Y sensitization (due to the enlarged surface area and electropositively modified surface), the optimized crystal structure (well-crystallized anatase phase), and the unique micro/nanostructure (nanosheet-stacked hollow spheres). This work presented an effective route to explore new visible-light-driven H2-production photocatalysts by coupling nanomaterials with special morphologies and metal-free dyes with visible-light absorption.


Eosin Y Hydrogen Photocatalysis Sensitization Titania Visible light 



This work was supported by the National Natural Science Foundation of China (Nos. 51302212, 51236007 and 51323011), the China Postdoctoral Science Foundation (Nos. 2014T70915, 2013M540745, and 2013M542343), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2014JQ2-5022), the Postdoctoral Science Foundation in Shaanxi Province of China, and the Fundamental Research Funds for the Central Universities (Nos. 2013jdhz20 and xjj2013004).

Supplementary material

11051_2015_3057_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2181 kb)


  1. Abe R, Hara K, Sayama K, Domen K, Arakawa H (2000) Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation. J Photochem Photobiol A 137(1):63–69. doi: 10.1016/S1010-6030(00)00351-8 CrossRefGoogle Scholar
  2. Chen XB, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959. doi: 10.1021/cr0500535 CrossRefGoogle Scholar
  3. Chen XB, Shen SH, Guo LJ, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570. doi: 10.1021/cr1001645 CrossRefGoogle Scholar
  4. Chen XB, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750. doi: 10.1126/science.1200448 CrossRefGoogle Scholar
  5. Dhanalakshmi KB, Latha S, Anandan S, Maruthamuthu P (2001) Dye sensitized hydrogen evolution from water. Int J Hydrogen Energy 26(7):669–674. doi: 10.1016/S0360-3199(00)00134-8 CrossRefGoogle Scholar
  6. Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS (2001) XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17(9):2664–2669. doi: 10.1021/la0015213 CrossRefGoogle Scholar
  7. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38. doi: 10.1038/238037a0 CrossRefGoogle Scholar
  8. Gordon TR, Cargnello M, Paik T, Mangolini F, Weber RT, Fornasiero P, Murray CB (2012) Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J Am Chem Soc 134(15):6751–6761. doi: 10.1021/ja300823a CrossRefGoogle Scholar
  9. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4(2):145–153. doi: 10.1016/S1389-5567(03)00026-1 CrossRefGoogle Scholar
  10. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43(22):7520–7535. doi: 10.1039/C3cs60378d CrossRefGoogle Scholar
  11. Kong C, Min SX, Lu GX (2014) Dye-sensitized NiSx catalyst decorated on graphene for highly efficient reduction of water to hydrogen under visible light irradiation. ACS Catal 4(8):2763–2769. doi: 10.1021/cs5006844 CrossRefGoogle Scholar
  12. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278. doi: 10.1039/b800489g CrossRefGoogle Scholar
  13. Li QY, Lu GX (2007) Visible-light driven photocatalytic hydrogen generation on Eosin Y-sensitized Pt-loaded nanotube Na2Ti2O4(OH)2. J Mol Catal A 266(1–2):75–79CrossRefGoogle Scholar
  14. Li QY, Lu GX (2008) Controlled synthesis and photocatalytic investigation of different-shaped one-dimensional titanic acid nanomaterials. J Power Sour 185(1):577–583. doi: 10.1016/j.jpowsour.2008.06.043 CrossRefGoogle Scholar
  15. Li HX, Bian ZF, Zhu J, Zhang DQ, Li GS, Huo YN, Li H, Lu YF (2007) Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity. J Am Chem Soc 129(27):8406–8407. doi: 10.1021/Ja072191c CrossRefGoogle Scholar
  16. Li JX, Xu JH, Dai WL, Li HX, Fan KN (2009a) Direct hydro-alcohol thermal synthesis of special core–shell structured Fe-doped titania microspheres with extended visible light response and enhanced photoactivity. Appl Catal B 85(3–4):162–170. doi: 10.1016/j.apcatb.2008.07.008 CrossRefGoogle Scholar
  17. Li YX, Guo MM, Peng SQ, Lu GX, Li SB (2009b) Formation of multilayer-Eosin Y-sensitized TiO2 via Fe3+ coupling for efficient visible-light photocatalytic hydrogen evolution. Int J Hydrogen Energy 34(14):5629–5636. doi: 10.1016/j.ijhydene.2009.05.100 CrossRefGoogle Scholar
  18. Liu SW, Li C, Yu JG, Xiang QJ (2011) Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrysEngComm 13(7):2533–2541. doi: 10.1039/c0ce00295j CrossRefGoogle Scholar
  19. Liu Q, Pu ZH, Asiri AM, Qusti AH, Al-Youbi AO, Sun XP (2013) One-step solvothermal synthesis of MoS2/TiO2 nanocomposites with enhanced photocatalytic H2 production. J Nanopart Res 15(11):2057CrossRefGoogle Scholar
  20. Liu J, Liu Y, Liu NY, Han YZ, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang ZH (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225):970–974. doi: 10.1126/science.aaa3145 CrossRefGoogle Scholar
  21. Ma Y, Wang XL, Jia YS, Chen XB, Han HX, Li C (2014) Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev 114(19):9987–10043. doi: 10.1021/Cr500008u CrossRefGoogle Scholar
  22. Maeda K, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water. Nature 440(7082):295. doi: 10.1038/440295a CrossRefGoogle Scholar
  23. Maeda K, Eguchi M, Lee SHA, Youngblood WJ, Hata H, Mallouk TE (2009) Photocatalytic hydrogen evolution from hexaniobate nanoscrolls and calcium niobate nanosheets sensitized by ruthenium (II) bipyridyl complexes. J Phys Chem C 113(18):7962–7969. doi: 10.1021/jp900842e CrossRefGoogle Scholar
  24. Medzihradszky KF, Guan S, Maltby DA, Burlingame AL (2007) Sulfopeptide fragmentation in electron-capture and electron-transfer dissociation. J Am Soc Mass Spectr 18(9):1617–1624. doi: 10.1016/j.jasms.2007.06.002 CrossRefGoogle Scholar
  25. Pei DH, Luan JF (2012) Development of visible light-responsive sensitized photocatalysts. Int J Photoenergy 2012:262831. doi: 10.1155/2012/262831 CrossRefGoogle Scholar
  26. Shi JW, Guo LJ (2012) ABO3-based photocatalysts for water splitting. Prog Nat Sci Mater Int 22(6):592–615. doi: 10.1016/j.pnsc.2012.12.002 CrossRefGoogle Scholar
  27. Shi JW, Shen SH, Chen YB, Guo LJ, Mao SS (2012a) Visible light-driven photocatalysis of doped SrTiO3 tubular structure. Opt Express 20(6):A351–A359. doi: 10.1364/OE.20.00A351 CrossRefGoogle Scholar
  28. Shi JW, Ye JH, Li QY, Zhou ZH, Tong H, Xi GC, Guo LJ (2012b) Single-crystal nanosheet-based hierarchical AgSbO3 with exposed 001 facets: topotactic synthesis and enhanced photocatalytic activity. Chem Eur J 18(11):3157–3162. doi: 10.1002/chem.201102214 CrossRefGoogle Scholar
  29. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984). Pure Appl Chem 57(4):603–619. doi: 10.1351/pac198557040603 CrossRefGoogle Scholar
  30. Swierk JR, Méndez-Hernández DD, McCool NS, Liddell P, Terazono Y, Pahk I, Tomlin JJ, Oster NV, Moore TA, Moore AL, Gust D, Mallouk TE (2015) Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells. Proc Natl Acad Sci 112(6):1681–1686. doi: 10.1073/pnas.1414901112 CrossRefGoogle Scholar
  31. Xu H, Ouyang SX, Li P, Kako T, Ye JH (2013) High-active anatase TiO2 nanosheets exposed with 95 % 100 facets toward efficient H2 evolution and CO2 photoreduction. ACS Appl Mater Inter 5(4):1348–1354. doi: 10.1021/am302631b CrossRefGoogle Scholar
  32. Xu H, Ouyang SX, Liu LQ, Reunchan P, Umezawa N, Ye JH (2014) Recent advances in TiO2-based photocatalysis. J Mater Chem A 2(32):12642–12661. doi: 10.1039/C4ta00941j CrossRefGoogle Scholar
  33. Yang DJ, Liu HW, Zheng ZF, Yuan Y, Zhao JC, Waclawik ER, Ke XB, Zhu HY (2009) An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J Am Chem Soc 131(49):17885–17893. doi: 10.1021/ja906774k CrossRefGoogle Scholar
  34. Yin MC, Ma S, Wu CJ, Fan YT (2015) A noble-metal-free photocatalytic hydrogen production system based on cobalt(III) complex and eosin Y-sensitized TiO2. RSC Adv 5(3):1852–1858. doi: 10.1039/c4ra10767e CrossRefGoogle Scholar
  35. Youngblood WJ, Lee SHA, Maeda K, Mallouk TE (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc Chem Res 42(12):1966–1973. doi: 10.1021/Ar9002398 CrossRefGoogle Scholar
  36. Yu H, Ouyang SX, Yan SC, Li ZS, Yu T, Zou ZG (2011) Sol–gel hydrothermal synthesis of visible-light-driven Cr-doped SrTiO3 for efficient hydrogen production. J Mater Chem 21(30):11347–11351. doi: 10.1039/c1jm11385b CrossRefGoogle Scholar
  37. Yu Z, Li F, Sun LC (2014) Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy Environ Sci 8(3):760–775. doi: 10.1039/c4ee03565h CrossRefGoogle Scholar
  38. Zhang K, Jing DW, Xing CJ, Guo LJ (2007) Significantly improved photocatalytic hydrogen production activity over Cd1−xZnxS photocatalysts prepared by a novel thermal sulfuration method. Inter J Hydrogen Energy 32(12):4685–4691. doi: 10.1016/j.ijhydene.2007.08.022 CrossRefGoogle Scholar
  39. Zhang F, Shi F, Ma W, Gao F, Jiao Y, Li H, Wang JC, Shan XY, Lu XH, Meng S (2013) Controlling adsorption structure of eosin Y dye on nanocrystalline TiO2 films for improved photovoltaic performances. J Phys Chem C 117(28):14659–14666. doi: 10.1021/jp404439p CrossRefGoogle Scholar
  40. Zhu HY, Zhao XS, Lu GQ, Do DD (1996) Improved comparison plot method for pore structure characterization of MCM-41. Langmuir 12(26):6513–6517. doi: 10.1021/La960541v CrossRefGoogle Scholar
  41. Zou ZG, Ye JH, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414(6864):625–627. doi: 10.1038/414625a CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE)Xi’an Jiaotong University (XJTU)Xi’anChina
  2. 2.Xi’an Thermal Power Research Institute Co., Ltd.Xi’anChina

Personalised recommendations