Green and fast synthesis of amino-functionalized graphene quantum dots with deep blue photoluminescence

  • E. Blanco
  • G. Blanco
  • J. M. Gonzalez-Leal
  • M. C. Barrera
  • M. Domínguez
  • M. Ramirez-del-Solar
Research Paper


Graphene quantum dots (GQDs) were prepared using a top-down approach with a green microwave-assisted hydrothermal synthesis from ultrathin graphite, previously ultrasound delaminated. Results obtained by transmission electron microscopy and atomic force microscopy indicate that the so-fabricated GQDs are plates with 6 nm of average diameter, mostly single- or bi-layered. Photoluminescence characterization shows that the strongest emission occurs at 410–415 nm wavelength when the samples are excited at 310–320 nm wavelength. In addition to these down-conversion features, GQDs also exhibit up-conversion photoluminescence when excited in the range 560–800 nm wavelength, with broad emission peaks at 410–450 nm wavelength. Analysis of X-ray photoelectron spectroscopy measurements indicates a higher proportion of C–C sp2 than sp3 bonds, with the sp3 ones mainly located at the GQD surfaces. Also evidences of C–O and C–N bonds at the GQD surface have been observed. The combination of these results with Raman and ultraviolet–visible absorption experiments allows envisaging the GQDs to be composed of amino-functionalized sp2 islands with a high degree of surface oxidation. This would explain the photoluminescent properties observed in the samples under study. The combined up- and down-conversion photoluminescence processes would made these GQDs a powerful energy-transfer component in GQDs–TiO2 nanocomposite systems, which could be used in photocatalyst devices with superior performance compared to simple TiO2 systems.


Graphene quantum dots Luminescence Ultrasounds Microwave Raman Up-conversion 



This work was partially supported by the Spanish MICINN under research project MAT2009-09857.

Supplementary material

11051_2015_3024_MOESM1_ESM.docx (724 kb)
Supplementary material 1 (DOCX 723 kb)


  1. Bao L, Zhang Z-L, Tian Z-Q et al (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater 23:5801–5806. doi: 10.1002/adma.201102866 CrossRefGoogle Scholar
  2. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374. doi: 10.1039/b9nr00377k CrossRefGoogle Scholar
  3. Cancado LG, Takai K, Enoki T et al (2006) General equation for the determination of the crystallite size L[sub a] of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106. doi: 10.1063/1.2196057 CrossRefGoogle Scholar
  4. Cao L, Meziani MJ, Sahu S, Sun Y-P (2013) Photoluminescence properties of graphene versus other carbon nanomaterials. Acc Chem Res 46:171–180. doi: 10.1021/ar300128j CrossRefGoogle Scholar
  5. Chen Y-B, Liu JS, Lin P (2013a) Recent trend in graphene for optoelectronics. J Nanopart Res 15:1454. doi: 10.1007/s11051-013-1454-3 CrossRefGoogle Scholar
  6. Chen Y-C, Huang X-C, Luo Y-L et al (2013b) Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems. Sci Technol Adv Mater 14:044407. doi: 10.1088/1468-6996/14/4/044407 CrossRefGoogle Scholar
  7. Choi W, Lee J-W (2011) Graphene. CRC Press, Boca RatonGoogle Scholar
  8. da Silva AR, Aucélio RQ, Rodríguez-Cotto RI et al (2014) Physicochemical properties and toxicological assessment of modified CdS nanoparticles. J Nanopart Res 16:2655. doi: 10.1007/s11051-014-2655-0 CrossRefGoogle Scholar
  9. Eda G, Lin Y-Y, Mattevi C et al (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22:505–509. doi: 10.1002/adma.200901996 CrossRefGoogle Scholar
  10. Fernández-Ibáñez P, Polo-López MI, Malato S et al (2014) Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem Eng J. doi: 10.1016/j.cej.2014.06.089 Google Scholar
  11. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107CrossRefGoogle Scholar
  12. Giannopoulos GI, Kallivokas IG (2014) Mechanical properties of graphene based nanocomposites incorporating a hybrid interphase. Finite Elem Anal Des 90:31–40. doi: 10.1016/j.finel.2014.06.008 CrossRefGoogle Scholar
  13. Gokus T, Nair RR, Bonetti A et al (2009) Making graphene luminescent by oxygen plasma treatment. ACS Nano 3:3963–3968. doi: 10.1021/nn9012753 CrossRefGoogle Scholar
  14. Hoffmann R (1968) Trimethylene and the addition of methylene to ethylene. J Am Chem Soc 90(6):1475–1485CrossRefGoogle Scholar
  15. Horikoshi S, Serpone N (2013) Microwaves in nanoparticle synthesis. Wiley, New YorkCrossRefGoogle Scholar
  16. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. doi: 10.1021/ja01539a017 CrossRefGoogle Scholar
  17. Jastrzębska AM, Kurtycz P, Olszyna AR (2012) Recent advances in graphene family materials toxicity investigations. J Nanopart Res 14:1320. doi: 10.1007/s11051-012-1320-8 CrossRefGoogle Scholar
  18. Kaciulis S (2012) Spectroscopy of carbon: from diamond to nitride films. Surf Interface Anal 44:1155–1161. doi: 10.1002/sia.4892 CrossRefGoogle Scholar
  19. Kharissova OV, Kharisov BI, Ruiz Valdes JJ, Ortiz Mendez U (2011) Synthesis and reactivity in inorganic metal-organic and nano-metal chemistry. Ultrasound Nanochem 41:429–448. doi: 10.1080/15533174.2011.568424 Google Scholar
  20. Kim S, Hwang SW, Kim M-K et al (2012) Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano 6:8203–8208. doi: 10.1021/nn302878r CrossRefGoogle Scholar
  21. Kim S, Hee Shin D, Oh Kim C et al (2013) Size-dependence of Raman scattering from graphene quantum dots: interplay between shape and thickness. Appl Phys Lett 102:053108. doi: 10.1063/1.4790641 CrossRefGoogle Scholar
  22. Knight DS, White WB (1989) Characterization of diamond films by Raman-spectroscopy. J Mater Res 4:385–393CrossRefGoogle Scholar
  23. Lascovich JC, Giorgi R, Scaglione S (1991) Evaluation of the Sp2/Sp3 ratio in amorphous-carbon structure by Xps and Xaes. Appl Surf Sci 47:17–21CrossRefGoogle Scholar
  24. Lespade P, Aljishi R, Dresselhaus MS (1982) Model for Raman-scattering from incompletely graphitized carbons. Carbon 20:427–431CrossRefGoogle Scholar
  25. Li H, He X, Kang Z et al (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49:4430–4434. doi: 10.1002/anie.200906154 CrossRefGoogle Scholar
  26. Li H, He X, Liu Y et al (2011) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49:605–609. doi: 10.1016/j.carbon.2010.10.004 CrossRefGoogle Scholar
  27. Li L-L, Ji J, Fei R et al (2012a) A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater 22:2971–2979. doi: 10.1002/adfm.201200166 CrossRefGoogle Scholar
  28. Li M, Wu W, Ren W et al (2012b) Synthesis and upconversion luminescence of N-doped graphene quantum dots. Appl Phys Lett 101:103107. doi: 10.1063/1.4750065 CrossRefGoogle Scholar
  29. Li L, Wu G, Yang G et al (2013a) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015. doi: 10.1039/c3nr33849e CrossRefGoogle Scholar
  30. Li M, Ni W, Kan B et al (2013b) Graphene quantum dots as the hole transport layer material for high-performance organic solar cells. Phys Chem Chem Phys 15:18973. doi: 10.1039/c3cp53283f CrossRefGoogle Scholar
  31. Lucchese MM, Stavale F, Ferreira EHM et al (2010) Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48:1592–1597. doi: 10.1016/j.carbon.2009.12.057 CrossRefGoogle Scholar
  32. Ma C, Chen Z, Fang M, Lu H (2012) Controlled synthesis of graphene sheets with tunable sizes by hydrothermal cutting. J Nanopart Res 14:996. doi: 10.1007/s11051-012-0996-0 CrossRefGoogle Scholar
  33. Mahdizadeh SJ, Goharshadi EK (2014) Thermal conductivity and heat transport properties of graphene nanoribbons. J Nanopart Res 16:2553. doi: 10.1007/s11051-014-2553-5 CrossRefGoogle Scholar
  34. Mandal B, Sarkar S, Sarkar P (2012) Exploring the electronic structure of graphene quantum dots. J Nanopart Res 14:1317. doi: 10.1007/s11051-012-1317-3 CrossRefGoogle Scholar
  35. Munoz-Sandoval E (2013) Trends in nanoscience, nanotechnology, and carbon nanotubes: a bibliometric approach. J Nanopart Res 16:2152. doi: 10.1007/s11051-013-2152-x CrossRefGoogle Scholar
  36. Nečas D, Klapetek P (2011) Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 10:181–188. doi: 10.2478/s11534-011-0096-2 Google Scholar
  37. Nurunnabi M, Khatun Z, Huh KM et al (2013) In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano. doi: 10.1021/nn402043c Google Scholar
  38. Nuvoli D, Alzari V, Sanna R et al (2013) Synthesis and characterization of graphene-based nanocomposites with potential use for biomedical applications. J Nanopart Res 15:1512. doi: 10.1007/s11051-013-1512-x CrossRefGoogle Scholar
  39. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738. doi: 10.1002/adma.200902825 CrossRefGoogle Scholar
  40. Patete JM, Peng X, Koenigsmann C et al (2011) Viable methodologies for the synthesis of high-quality nanostructures. Green Chem 13:482–519. doi: 10.1039/c0gc00516a CrossRefGoogle Scholar
  41. Peng J, Gao W, Gupta BK et al (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849. doi: 10.1021/nl2038979 CrossRefGoogle Scholar
  42. Ponomarenko LA, Schedin F, Katsnelson MI et al (2008) Chaotic dirac billiard in graphene quantum dots. Science 320:356–358. doi: 10.1126/science.1154663 CrossRefGoogle Scholar
  43. Posudievsky OY, Khazieieva OA, Cherepanov VV et al (2013) High yield of graphene by dispersant-free liquid exfoliation of mechanochemically delaminated graphite. J Nanopart Res 15:2046. doi: 10.1007/s11051-013-2046-y CrossRefGoogle Scholar
  44. Powell CJ, Jablonski A (2010) NIST electron inelastic-mean-free-path database, Ver. 1.2. National Institute of Standars and TechnologyGoogle Scholar
  45. Pruna A, Pullini D, Busquets D (2013) Influence of synthesis conditions on properties of green-reduced graphene oxide. J Nanopart Res 15:1605. doi: 10.1007/s11051-013-1605-6 CrossRefGoogle Scholar
  46. Rao C, Matte HR, Subrahmanyam KS (2013) Synthesis and selected properties of graphene and graphene mimics. Acc Chem Res 46:149–159CrossRefGoogle Scholar
  47. Shen J, Zhu Y, Chen C et al (2011) Facile preparation and upconversion luminescence of graphene quantum dots. Chem Commun 47:2580. doi: 10.1039/c0cc04812g CrossRefGoogle Scholar
  48. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686. doi: 10.1039/c2cc00110a CrossRefGoogle Scholar
  49. Sheng W-D, Korkusinski M, Güçlü AD et al (2011) Electronic and optical properties of semiconductor and graphene quantum dots. Front Phys 7:328–352. doi: 10.1007/s11467-011-0200-5 CrossRefGoogle Scholar
  50. Sun H, Wu L, Gao N et al (2013) Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its bioimaging application. ACS Appl Mater Interfaces 5:1174–1179. doi: 10.1021/am3030849 CrossRefGoogle Scholar
  51. Tetsuka H, Asahi R, Nagoya A et al (2012) Optically tunable amino-functionalized graphene quantum dots. Adv Mater 24:5333–5338. doi: 10.1002/adma.201201930 CrossRefGoogle Scholar
  52. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126. doi: 10.1063/1.1674108 CrossRefGoogle Scholar
  53. Wang X, Liu X, Xue X et al (2013) Pseudo and true visible light photocatalytic activity of nanotube titanic acid/graphene composites. J Nanopart Res 15:1764. doi: 10.1007/s11051-013-1764-5 CrossRefGoogle Scholar
  54. Wojtoniszak M, Mijowska E (2012) Controlled oxidation of graphite to graphene oxide with novel oxidants in a bulk scale. J Nanopart Res 14:1248. doi: 10.1007/s11051-012-1248-z CrossRefGoogle Scholar
  55. Wong H-SP, Akinwande D (2010) Carbon nanotube and graphene device physics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  56. Yan X, Cui X, Li B, Li L-S (2010) Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett 10:1869–1873. doi: 10.1021/nl101060h CrossRefGoogle Scholar
  57. Yang F, Zhao M, Zheng B et al (2012a) Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. J Mater Chem 22:25471. doi: 10.1039/c2jm35471c CrossRefGoogle Scholar
  58. Yang K, Feng L, Shi X, Liu Z (2012b) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42:530. doi: 10.1039/c2cs35342c CrossRefGoogle Scholar
  59. Yang K, Gong H, Shi X et al (2013) In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 34:2787–2795CrossRefGoogle Scholar
  60. Zhang ZZ, Chang K (2008) Tuning of energy levels and optical properties of graphene quantum dots. Phys Rev B. doi: 10.1103/PhysRevB.77.235411 Google Scholar
  61. Zhang RQ, Bertran E, Lee ST (1998) Size dependence of energy gaps in small carbon clusters: the origin of broadband luminescence. Diam Relat Mater 7:1663–1668CrossRefGoogle Scholar
  62. Zhang M, Bai L, Shang W et al (2012) Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22:7461. doi: 10.1039/c2jm16835a CrossRefGoogle Scholar
  63. Zhang R, Liu Y-B, Sun S-Q (2013) Preparation of highly luminescent and biocompatible carbon dots using a new extraction method. J Nanopart Res 15:2010. doi: 10.1007/s11051-013-2010-x CrossRefGoogle Scholar
  64. Zhou Y, Bao Q, Tang LAL et al (2009) Hydrothermal dehydration for the “Green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956. doi: 10.1021/cm9006603 CrossRefGoogle Scholar
  65. Zhu S, Zhang J, Qiao C et al (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858. doi: 10.1039/c1cc11122a CrossRefGoogle Scholar
  66. Zhuo S, Shao M, Lee S-T (2012) Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano 6:1059–1064. doi: 10.1021/nn2040395 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • E. Blanco
    • 1
  • G. Blanco
    • 1
  • J. M. Gonzalez-Leal
    • 1
  • M. C. Barrera
    • 1
  • M. Domínguez
    • 1
  • M. Ramirez-del-Solar
    • 1
  1. 1.Institute of Electron Microscopy and MaterialsUniversity of CádizPuerto RealSpain

Personalised recommendations