Room-temperature sol–gel synthesis of organic ligand-capped ZnO nanoparticles

  • Mirijam ZobelEmail author
  • Haimantee Chatterjee
  • Galina Matveeva
  • Ute Kolb
  • Reinhard B. NederEmail author
Research Paper


Powders of zinc oxide nanoparticles with individual particle sizes below 10 nm in diameter are readily produced in base-induced sol–gel processes from ethanolic solutions of zinc acetate dihydrate. These particles are covered with acetate molecules and without further stabilization, they grow when stored as a powder. Here, we present three organic ligands, which reproducibly stabilize individual particle sizes <5 nm within the agglomerated powders for extended periods of time, up to months. Citric acid and 1,5-diphenyl-1,3,5-pentanetrione result in average diameters of 3 nm, whereas dimethyl-L-tartrate stabilizes 2.1 nm. X-ray diffraction and pair distribution function analysis were used to investigate the structural properties of the particles. TEM data confirm the individual particle size and crystallinity and show that the particles are agglomerated without structural coherence. Besides the introduction of these novel ligands for ZnO nanoparticles, we investigated, in particular, the influence of each synthesis step onto the final nanoparticle size in the powder. Previous studies often reported the employed synthesis parameters, but did not motivate the reasoning for their choice based on detailed experimental observations. Herein, we regard separately the steps of (i) the synthesis of the colloids, (ii) their precipitation, and (iii) the drying of the resulting gel to understand the role of the ligands therein. ZnO particles only covered with acetate grow to 5 nm during the drying process, whereas particles with any of the additional ligands retain their colloidal size of 2–3 nm. This clearly shows the efficient binding and effect of the presented ligands.


ZnO Nanoparticle Sol–gel synthesis Organic ligand Room temperature synthesis 



We want to acknowledge a scholarship of the Friedrich-Alexander-University Erlangen-Nürnberg for financial support and the BMBF under grant numbers 05K10WEB and 05K13WE2 for travel expenses. Beamtime at Argonne National Laboratory and the European Synchrotron Radiation Facility is gratefully acknowledged. We thank K. Chapman and K. Beyer from beamline 11-ID-B, APS for support during our beamtime as well as J. Hudspeth and S. A. J. Kimber from beamline ID-15-B, ESRF. We acknowledge H. Brückner and A. Windmüller for synthesis of nanoparticle powders for these experiments as well as J. Harz, N. Pfeiffer, and M. Fischer for optimization of the synthesis recipes. K. Götz is acknowledged for his help during beamtime. We further thank C. Damm and A. Windmüller for carrying out the TGA measurements.

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

11051_2015_3006_MOESM1_ESM.docx (46.9 mb)
Supplementary material 1 (DOCX 48056 kb)


  1. Ali M, Winterer M (2010) ZnO Nanocrystals: surprisingly “Alive”. Chem Mater 22(1):85–91CrossRefGoogle Scholar
  2. Anta JA, Guillén E, Tena-Zaera R (2012) ZnO-based dye-sensitized solar cells. J Phys Chem C 116:11413–11425CrossRefGoogle Scholar
  3. Briois V, Giorgetti C, Dartyge E, Baudelet F, Tokumoto MS, Pulcinelli SH, Santilli CF (2007) In situ and simultaneous nanostructural and spectroscopic studies of ZnO nanoparticle and Zn-HDS formations from hydrolysis of ethanolic zinc acetate solutions induced by water. J Sol-Gel Sci Techn 39:3253–3258Google Scholar
  4. Chory C, Neder RB, Korsunskiy VI, Niederdraenk F, Kumpf C, Umbach E, Schumm M, Lentze M, Geurts J, Astakhov G, Ossau W, Müller G (2007) Influence of liquid-phase synthesis parameters on particle sizes and structural properties of nanocrystalline ZnO powders. Phys Stat Sol (c) 4(9):3260–3269CrossRefGoogle Scholar
  5. Cornell RM, Schindler PW (1980) Infrared study of the adsorption of hydroxycarboxylic acids on α-FeOOH and amorphous Fe (III) hydroxide. Colloid Polym Sci 258(10):1171–1175CrossRefGoogle Scholar
  6. Gilbert B, Zhang H, Huang F, Banfield JF, Ren Y, Haskel D, Lang JC, Srajer G, Jürgensen A, Waychunas GA (2006) Surface chemistry controls crystallinity of ZnS nanoparticles. Nanoletters 6(4):605–610CrossRefGoogle Scholar
  7. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Häusermann D (1995) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res 14:235–248CrossRefGoogle Scholar
  8. Hosono E, Fujihara S, Kimura T, Imai H (2004) Non-Basic solution routes to prepare ZnO nanoparticles. J Sol–Gel Sci Techn 29(2):71–79CrossRefGoogle Scholar
  9. Howell R, Proffen T, Conradson S (2006) Pair distribution function and structure factor of spherical particles. Phys Rev B 73(9):094107CrossRefGoogle Scholar
  10. Juhás P, Davis P, Farrow CL, Billinge SJL (2013) PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J Appl Cryst 46:560–566CrossRefGoogle Scholar
  11. Kahn ML, Monge M, Collière V, Senocq F, Maisonnat A, Chaudret B (2005) Size- and shape-control of crystalline zinc oxide nanoparticles: a new organometallic synthetic method. Adv Funct Mater 15(3):458–468CrossRefGoogle Scholar
  12. Kaszkur Z, Rzeszotarski P, Juszczyk W (2014) Powder diffraction in studies of nanocrystal surfaces: chemisorption on Pt. J Appl Cryst 47(6):2069–2077CrossRefGoogle Scholar
  13. Kawska A, Duchstein P, Hochrein O, Zahn D (2008) Atomistic mechanisms of ZnO aggregation from ethanolic solution : ion association, proton transfer, and self-organization. Nanoletters 8(8):2336–2340CrossRefGoogle Scholar
  14. Klingshirn C (2007) ZnO: material, physics and applications. ChemPhysChem 8(6):782–803CrossRefGoogle Scholar
  15. Kodama K, Iikubo S, Taguchi T, Shamoto S (2006) Finite size effects of nanoparticles on the atomic pair distribution functions. Acta Cryst A62:444–453CrossRefGoogle Scholar
  16. Korsounski VI, Neder RB, Hradil K, Barglik-Chory Ch, Müller G, Neuefeind J (2003) Investigation of nanocrystalline CdS-glutathione particles by radial distribution function. J Appl Cryst 36:1389–1396CrossRefGoogle Scholar
  17. Lei Y, Zhao H, Rivas RD, Lee S, Liu B, Lu J, Stach E, Winans RE, Chapman KW, Greley JP, Miller JT, Chupas PJ, Elam JW (2014) Adsorbate-induced structural changes in 1–3 nm platinum nanoparticles. J Am Chem Soc 136:9320–9326CrossRefGoogle Scholar
  18. Liang J, Liu J, Xie W, Bai S, Yu W, Quian Y (2005) Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles. J Phys Chem B 109:9463–9467CrossRefGoogle Scholar
  19. Marczak R, Segets D, Voigt M, Peukert W (2010) Optimum between purification and colloidal stability of ZnO nanoparticles. Adv Powder Technol 21:41–49CrossRefGoogle Scholar
  20. Meulenkamp EA (1998a) Size dependence of the dissolution of ZnO nanoparticles. J Phys Chem B 102:7764–7769CrossRefGoogle Scholar
  21. Meulenkamp EA (1998b) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572CrossRefGoogle Scholar
  22. Mugnaioli E, Gorelik T, Kolb U (2009) “Ab initio” structure analysis from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy 109:758–765CrossRefGoogle Scholar
  23. Music S, Popovic S, Maljkovic M, Dragcevic D (2002) Influence of synthesis procedure on the formation and properties of zinc oxide. J Alloy Compd 347:324–332CrossRefGoogle Scholar
  24. Neder RB, Korsunskiy VI (2005) Structure of nanoparticles from powder diffraction data using the pair distribution function. J Phys Condens Matter 17:125–134CrossRefGoogle Scholar
  25. Neder RB, Proffen T (2009) Diffuse scattering and defect structure simulation. Oxford University Press, OxfordGoogle Scholar
  26. Neveu S, Bee A, Robineau M, Talbot D (2002) Size-selective chemical synthesis of tartrate stabilized cobalt ferrite ionic magnetic fluid. J Colloid Interface Sci 255:293–298CrossRefGoogle Scholar
  27. Niederdraenk F, Seufert K, Stahl A, Bhalerao-Panajkar RS, Marathe S, Kulkarni SK, Neder RB, Kumpf C (2011) Ensemble modeling of very small ZnO nanoparticles. Phys Chem Chem Phys 13:498–505CrossRefGoogle Scholar
  28. Rani S, Suri P, Shishodia PK, Mehra RM (2008) Synthesis of nanocrystalline ZnO powder via sol–gel route for dye-sensitized solar cells. Sol Energy Mater Sol Cells 92:1639–1645CrossRefGoogle Scholar
  29. Raymand D et al (2011) Hydroxylation structure and proton transfer reactivity at the zinc oxide–water interface. J Phys Chem C 1010:8573–8579CrossRefGoogle Scholar
  30. Renuka R, Ramamurthy S, Muralidharan K (1998) Effect of citrate, tartrate and gluconate ions on the behaviour of zinc in 3 M NaOH. J Power Sources 76:197–209CrossRefGoogle Scholar
  31. Sakohara S, Ishida M, Anderson M (1998) Visible luminescence and surface properties of nanosized ZnO colloids prepared by hydrolyzing zinc acetate. J Phys Chem B 102:10169–10175CrossRefGoogle Scholar
  32. Singh P, Sinha OP, Srivastava R, Srivastava AK, Thomas SV, Sood KN, Kamalasanan MN (2013) Surface modified ZnO nanoparticles: structure, photophysics, and its optoelectronic application. J Nanopart Res 15:1758–1767CrossRefGoogle Scholar
  33. Spanhel L, Anderson M (1991) Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids. J Am Chem Soc 113:2826–2833CrossRefGoogle Scholar
  34. Tokumoto MS, Pulcinelli SH, Santilli CV, Briois V (2003) Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the sol-gel route. J Phys Chem B 107:568–574CrossRefGoogle Scholar
  35. Valdez CN, Schimpf AM, Gamelin DR, Mayer JM (2014) Low capping group surface density on zinc oxide nanocrystals. ACS Nano 8(9):9463–9470CrossRefGoogle Scholar
  36. Vanmaekelbergh D, van Vugt LK (2011) ZnO nanowire lasers. Nanoscale 3:2783–2800CrossRefGoogle Scholar
  37. Viswanatha R, Amenitsch H, Sarma DD (2007) Growth kinetics of ZnO nanocrystals: a few surprises. J Am Chem Soc 129:4470–4475CrossRefGoogle Scholar
  38. Wong EM, Hoertz PG, Liang CJ, Shi B-M, Meyer GJ, Searson PC (2001) Influence of organic capping ligands on the growth kinetics of ZnO nanoparticles. Langmuir 17:8362–8367CrossRefGoogle Scholar
  39. Wood A, Giersig M, Hilgendorff M, Vilas-Campos A, Liz-Marzán LM, Mulvaney P (2003) Size effects in ZnO: the cluster to quantum dot transition. Aust J Chem 56:1051–1057CrossRefGoogle Scholar
  40. Yang X, Masadeh AS, McBride JR, Bozin ES, Rosenthal SJ, Billinge SJL (2013) Confirmation of disordered structure of ultrasmall CdSe nanoparticles from X-ray atomic pair distribution function analysis. Phys Chem Chem Phys 15:8480–8486CrossRefGoogle Scholar
  41. Zhang J, Gao L (2004) Synthesis and characterization of nanocrystalline tin oxide by sol-gel method. J Solid State Chem 177:1425–1430CrossRefGoogle Scholar
  42. Zobel M, Neder RBN, Windmüller A, Milek T, Zahn D, Kimber SAJ, in preparationGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Physics, Lehrstuhl für Kristallographie und StrukturphysikFriedrich-Alexander University Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Institut für Physikalische ChemieJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations