Advertisement

Haloperidol-loaded lipid-core polymeric nanocapsules reduce DNA damage in blood and oxidative stress in liver and kidneys of rats

  • Katiane Roversi
  • Dalila M. BenvegnúEmail author
  • Karine Roversi
  • Fabíola Trevizol
  • Luciana T. Vey
  • Fabiana Elias
  • Rafael Fracasso
  • Mariana H. Motta
  • Roseane F. Ribeiro
  • Bruna dos S. Hausen
  • Rafael N. Moresco
  • Solange C. Garcia
  • Cristiane B. da Silva
  • Marilise E. BurgerEmail author
Research Paper

Abstract

Haloperidol (HP) nanoencapsulation improves therapeutic efficacy, prolongs the drug action time, and reduces its motor side effects. However, in a view of HP toxicity in organs like liver and kidneys in addition to the lack of knowledge regarding the toxicity of polymeric nanocapsules, our aim was to verify the influence of HP-nanoformulation on toxicity and oxidative stress markers in the liver and kidneys of rats, also observing the damage caused in the blood. For such, 28 adult male Wistar rats were designated in four experimental groups (n = 7) and treated with vehicle (C group), free haloperidol suspension (FH group), blank nanocapsules suspension (B-Nc group), and haloperidol-loaded lipid-core nanocapsules suspension (H-Nc group). The nanocapsules formulation presented the size of approximately 250 nm. All suspensions were administered to the animals (0.5 mg/kg/day-i.p.) for a period of 28 days. Our results showed that FH caused damage in the liver, evidenced by increased lipid peroxidation, plasma levels of aspartate aminotransferase, and alanine aminotransferase, as well as decreased cellular integrity and vitamin C levels. In kidneys, FH treatment caused damage to a lesser extent, observed by decreased activity of δ-aminolevulinate dehydratase (ALA-D) and levels of VIT C. In addition, FH treatment was also related to a higher DNA damage index in blood. On the other hand, animals treated with H-Nc and B-Nc did not show damage in liver, kidneys, and DNA. Our study indicates that the nanoencapsulation of haloperidol was able to prevent the sub-chronic toxicity commonly observed in liver, kidneys, and DNA, thus reflecting a pharmacological superiority in relation to free drug.

Keywords

Cellular integrity Haloperidol Polymeric nanocapsules Nanotoxicology Oxidative stress Nanomedicine 

Notes

Acknowledgments

The authors are grateful to CNPq (Edital Nanotecnologia MCT/CNPq 62/2010 no. 577450) for the financial support, to CAPES (K. R.; F. T. and B. S. H.), CNPq (Kr. R. and L. T. V.) for the fellowships, as well as for the research Grants (CNPq S. C. G. and M. E. B.).

Conflict of interest

Authors report no conflicts of interest.

Compliance with Ethical Standards

The experimental protocol of this study was approved by the Animal Ethics Committee of Universidade Federal de Santa Maria (CIETEA-22/2010), affiliated to CONCEA, and adhered to the ‘‘Principles of Laboratory Animal Care’’ and international rules of ethics in research.

References

  1. Aebi U, Chiu W, Milligan R (1995) Role of catalase on antioxidative defenses. J Struct Biol 2:117–118Google Scholar
  2. Ananth J, Parameswaran S, Hara B (2004) Drug therapy in schizophrenia. Curr Pharm Des 10:2205–2217Google Scholar
  3. Andem AB, Agbor RB, Ekpo IA (2013) Review on comet assay: a reliable tool for assessing dna damage in animal models. J Current Res Sci 1:405–427Google Scholar
  4. Andreassen OA, Jorgensen HA (2000) Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats - Implications for tardive dyskinesia? Prog Neurobiol 61(5):525–541Google Scholar
  5. Asanami S, Shimono K (2009) Species-level differences between mice and rats in regards to micronucleus induction with the hypothermia-inducing drug haloperidol. Mutat Res 31:102–105Google Scholar
  6. Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas AG, Ithakissios DS (2002) PLGA–mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release 79:123–135Google Scholar
  7. Balbi A, Muscettola G, Staiano N, Martire G, De Lorenzo F (1980) Psychotropic drugs: evaluation of mutagenic effect. Pharmacol Res Commun 12:423–431Google Scholar
  8. Beasley CL, Barr A, Barakauskas V, Feresten A, Honer W, Wei VV, Ypsilanti A, Andreazza A (2011) Increased lipid peroxidation and peroxiredoxin levels in liver of rats treated with haloperidol and clozapine. Biol Psychiat 69(9):188S–188SGoogle Scholar
  9. Beck RCR, Pohlmann AR, Benvenutti EV, Costa TD, Guterres SS (2005) Nanostructure-coated diclofenac-loaded microparticles: preparation, morphological characterization, in vitro release and in vivo gastrointestinal tolerance. J Brazil Chem Soc 16:1233–1240Google Scholar
  10. Beck RCR, Haas SE, Guterres SS, Ré MI, Benvenutti EV, Pohlmann AR (2006) Nanoparticle-coated organic-inorganic microparticles: experimental design and gastrointestinal tolerance evaluation. Quím Nova 29:990–996Google Scholar
  11. Beck RCR, Pohlmann AR, Hoffmeister C, Gallas MR, Collnot E, Schaefer UF, Guterres SS, Lehr CM (2007) Dexamethasone-loaded nanoparticle coated microparticles: correlation between in vitro drug release and drug transport across caco-2 cell monolayers. Eur J Pharm Biopharm 67:18–30Google Scholar
  12. Bender EA, Adorne MD, Colomé LM, Abdalla DS, Guterres SS, Pohlmann AR (2012) Hemocompatibility of poly(ɛ-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. Int J Pharm 426:271–279Google Scholar
  13. Benvegnú DM, Barcelos RC, Boufleur N, Reckziegel P, Pase CS, Ourique AF, Beck RC, Bürger ME (2011) Haloperidol-loaded polysorbate-coated polymeric nanocapsules increases its efficacy in the antipsychotic treatment in rats. Eur J Pharm Biopharm 77:332–336Google Scholar
  14. Benvegnú DM, Barcelos RC, Boufleur N, Reckziegel P, Pase CS, Ourique AF, Beck RC, Bürger ME (2012) Haloperidol-loaded polysorbate-coated polymeric nanocapsules decrease its adverse motor side effects and oxidative stress markers in rats. Neurochem Int 61:623–631Google Scholar
  15. Benzi G (1993) Aerobic performance and oxygen free radicals. J Sport Med Phys Fit 33:205–222Google Scholar
  16. Bernardi A, Braganhol E, Jäger E, Figueiró F, Edelweiss MI, Pohlmann AR, Guterres SS, Battastini AM (2009) Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett 281:53–63Google Scholar
  17. Bolcato J, Terrazzani G, Giusti P, Walley T, Chinellato A (2014) Atypical antipsychotic prescribing patterns in an Italian district 2001-2009 and the impact of regulatory warnings. Open Sci J Clin Med 2(1):10–14Google Scholar
  18. Boulikas T (2004) Low toxicity and anticancer activity of a novel liposomal cisplatin (Lipoplatin) in mouse xenografts. Oncol Rep 12(1):3–12Google Scholar
  19. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliver Rev 54:631–651Google Scholar
  20. Budhian A, Siegel SJ, Winey KI (2005) Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. J Microencapsul 22:773–785Google Scholar
  21. Budhian A, Siegel SJ, Winey KI (2007) Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm 336:367–375Google Scholar
  22. Budhian A, Siegel SJ, Winey KI (2008) Controlling the in vitro release profiles for a system of haloperidol-loaded PLGA nanoparticles. Int J Pharm 346:151–159Google Scholar
  23. Bulcão RP, Freitas FA, Venturini CG, Dallegrave E, Durgante J, Göethel G, Cerski CTS, Zielinsky P, Pohlmann AR, Guterres SS, Garcia SC (2013) Acute and subchronic toxicity evaluation of poly (ɛ-Caprolactone) lipid-core nanocapsules in rats. Toxicol Sci 132(1):162–176Google Scholar
  24. Bulcão RP, de Freitas FA, Dallegrave E, Venturini CG, Baierle M, Durgante J, Sauer E, Cassini C, Cerski CT, Zielinsky P, Salvador M, Pohlmann AR, Guterres SS, Garcia SC (2014) In vivo toxicological evaluation of polymeric nanocapsules after intradermal administration. Eur J Pharm Biopharm 86(2):167–177Google Scholar
  25. Burkhardt C, Kelly JP, Lim YH, Filley CM, Parker WD (1993) Neuroleptic medications inhibit complex I of the electron transport chain. Ann Neurol 33:512–517Google Scholar
  26. Callewaert M, Dukic S, Van Gulick L, Vittier M, Gafa V, Andry MC, Molinari M, Roullin VG (2013) Etoposide encapsulation in surface-modified poly (lactide-co-glycolide) nanoparticles strongly enhances glioma antitumor efficiency. J Biomed Mater Res—Part A 101A:1319–1327Google Scholar
  27. Casey DE (2004) Dyslipidemia and atypical antipsychotic drugs. J Clin Psychiat 65(18):27–35Google Scholar
  28. Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483Google Scholar
  29. Csernansky JG, Mahmud R, Brenner R (2002) A comparison of risperidone and haloperidol for the prevention of relapse in patients with schizophrenia. N Engl J Med 346:16–22Google Scholar
  30. Dalla Corte CL, Fachinetto R, Colle D, Pereira RP, Avila DS, Villarinho JG, Wagner C, Pereira ME, Nogueira CW, Soares FA, Rocha JBT (2008) Potentially adverse interactions between haloperidol and valerian. Food Chem Toxicol 46:2369–2375Google Scholar
  31. Dayalu P, Chou KL (2008) Antipsychotic-induced extrapyramidal symptoms and their management. Expert Opin Pharmacother 9:1451–1462Google Scholar
  32. Dimer FA, Ortiz M, Pase CS, Roversi K, Friedrich RB, Pohlmann AR, Burger ME, Guterres SS (2014) Nanoencapsulation of olanzapine increases its efficacy in antipsychotic treatment and reduces adverse effects. J Biomed Nanotechnol 10(6):1137–1145Google Scholar
  33. Falqueiro AM, Primo FL, Morais PC, Mosiniewicz-Szablewska E, Suchocki P, Tedesco AC (2011) Selol loaded magnetic nanocapsules: a new approach for hyperthermia cancer therapy. J Appl Phys 109:07B306-1–07B306-3Google Scholar
  34. Fang F, Gong CY, Dong PW, Fu SZ, Gu YC, Guo G, Zhao X, Wei YQ, Qian ZY (2009) Acute toxicity evaluation of in situ gel-forming controlled drug delivery system based on biodegradable poly(epsilon-caprolactone)- poly(ethylene glycol)- poly(epsilon-caprolactone) copolymer. Biomed Mater 4:025002Google Scholar
  35. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55(1):r1–r4Google Scholar
  36. Fontana MC, Coradini K, Guterres SS, Pohlmann AR, Beck RC (2009) Nanoencapsulation as a way to control the release and to increase the photostability of clobetasol propionate: influence of the nanostructured system. J Biomed Nanotechnol 5:254–263Google Scholar
  37. Fridovich I (1986) Superoxide dismutases. Adv Enzymol RAMB 58:61–97Google Scholar
  38. Fukunishi I, Kitaoka T, Shirai T, Kino K, Kanematsu E, Sato Y (2002) Psychiatric disorders among patients undergoing hemodialysis therapy. Nephron 91:344–347Google Scholar
  39. Gaertner I, Altendorf K, Batra A, Gaertner HJ (2001) Relevance of liver enzyme elevations with four different neuroleptics: a retrospective review of 7263 treatment courses. J Clin Psychopharm 21:215–222Google Scholar
  40. Galley H, Davies MJ, Webster NR (1996) Ascorbyl radical formation in patients with sepsis: effects of ascorbate loading. Free Radical Bio Med 20:139–143Google Scholar
  41. Gao Y, Xu P, Chen L, Li Y (2010) Prostaglandin E1 encapsulated into lipid nanoparticles improves its anti-inflammatory effect with low side-effect. Int J Pharm 387:263–271Google Scholar
  42. Gao Y, Yang R, Zhang Z, Chen L, Sun Z, Li Y (2011) Solid lipid nanoparticles reduce systemic toxicity of docetaxel: performance and mechanism in animal. Nanotoxicology 5(4):636–649Google Scholar
  43. Gebreselassie D, Bowen WD (2004) Sigma-2 receptors are specifically localized to lipid rafts in rat liver membranes. Eur J Pharmacol 493:19–28Google Scholar
  44. Gonçalves TL, Benvegnú DM, Bonfanti G, Frediani AV, Rocha JB (2009a) δ-Aminolevulinate dehydratase activity and oxidative stress during melphalan and cyclophosphamide-BCNU-etoposide (CBV) conditioning regimens in autologous bone marrow transplantation patients. Pharmacol Res 59(4):279–284Google Scholar
  45. Gonçalves TL, Benvegnú DM, Bonfanti G, Frediani AV, Rocha JB (2009b) δ-ALA-D activity is a reliable marker for oxidative stress in bone marrow transplant patients. BMC Cancer 9:138Google Scholar
  46. Gonçalves TL, Benvegnú DM, Bonfanti G, Frediani AV, Pereira DV, Rocha JB (2009c) Oxidative stress and δ-ALA-D activity in different conditioning regimens in allogeneic bone marrow transplantation patients. Clin Biochem 42:602–610Google Scholar
  47. Grillo R, dos Santos NZ, Maruyama CR, Rosa AH, de Lima R, Fraceto LF (2012) Poly(-caprolactone) nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231–232:1–9Google Scholar
  48. Grotto D, Santa Maria LD, Boeira S, Valentini J, Charão MF, Moro AM, Nascimento PC, Pomblum VJ, Garcia SC (2007) Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. J Pharmaceutical Biomed 43:619–624Google Scholar
  49. Gulaboglu M, Halici Z, Aydin N, Cadirci E, Gul M, Suleyman H, Oral E (2006) The effects of risperidone, olanzapine and haloperidol on enzyme activities in kidney tissue of rats. Eur Neuropsychopharm 16:S246–S247Google Scholar
  50. Halici Z, Dursun H, Keles ON, Odaci E, Suleyman H, Aydin N, Cadirci E, Kalkan Y, Unal B (2009) Effect of chronic treatment of haloperidol on the rat liver: a stereological and histopathological study. N-S Arch Pharmacol 379:253–261Google Scholar
  51. Hanagama M, Inoue H, Kamiya M, Shinone K, Nata M (2008) Gene expression on liver toxicity induced by administration of haloperidol in rats with severe fatty liver. Leg Med 10:177–184Google Scholar
  52. Hu YL, Qi W, Han F, Shao JZ, Gao JQ (2011) Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int J Nanomed 6:3351–3359Google Scholar
  53. Huang Y, Gao H, Gou M, Ye H, Liu Y, Gao Y, Peng F, Qian Z, Cen X, Zhao Y (2010) Acute toxicity and genotoxicity studies on poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanomaterials. Mutat Res 696:101–106Google Scholar
  54. Ianiski FR, Alves CB, Souza AC, Pinton S, Roman SS, Rhoden CR, Alves MP, Luchese C (2012) Protective effect of meloxicam-loaded nanocapsules against amyloid-β peptide-induced damage in mice. Behav Brain Res 230:100–107Google Scholar
  55. Jacques-Silva MC, Nogueira CW, Broch LC, Flores EM, Rocha JB (2001) Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Toxicol Appl Pharm 88:119–125Google Scholar
  56. Kim SY, Lee YM, Baik DJ, Kang JS (2003) Toxic characteristics of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) nanospheres, in vitro and in vivo studies in the normal mice. Biomaterials 24:55–63Google Scholar
  57. Kumar M, Pathak K, Misra A (2009) Formulation and characterization of nanoemulsion-based drug delivery system of risperidone. Drug Dev Ind Pharm 35:387–395Google Scholar
  58. Lai MK, Chang CY, Lien YW, Tsiang RC (2006) Application of gold nanoparticles to microencapsulation of thioridazine. J Control Release 111:352–361Google Scholar
  59. Liu Y, Schubert D (1997) Cytotoxic amyloid peptides inhibit cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by enhancing MTT formazan exocytosis. J Neurochem 69(6):2285–2293Google Scholar
  60. Loveday KS, Lugo MH, Resnick MA, Anderson BE, Zeiger E (1989) Chromosome aberration and sister chromatid exchange tests in Chinese hamster ovary cells in vitro: results with 20 chemicals. Environ Mol Mutagen 13(1):60–94Google Scholar
  61. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  62. Manjunath K, Venkateswarlu V (2005) Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Control Release 107:215–228Google Scholar
  63. Marchiori ML, Lubini G, Dalla Nora G, Friedrich RB, Fontana MC, Ourique AF, Bastos MO, Rigo LA, Silva CB, Tedesco SB, Beck RC (2010) Hydrogel containing dexamethasone-loaded nanocapsules for cutaneous administration: preparation, characterization, and in vitro drug release study. Drug Dev Ind Pharm 36:962–971Google Scholar
  64. Maurer I, Moller HJ (1997) Inhibition of complex I by neuroleptics in normal brain cortex parallels the extrapyramidal toxicity of neuroleptics. Mol Cell Biochem 174:255–259Google Scholar
  65. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Brit J Pharmacol 150:552–558Google Scholar
  66. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem 247:3170–3175Google Scholar
  67. Möller HJ, Riedel M, Jager M, Wickelmaier F, Maier W, Kühn KU, Buchkremer G, Heuser I, Klosterkötter J, Gastpar M, Braus DF, Schlösser R, Schneider F, Ohmann C, Riesbeck M, Gaebel W (2008) Short-term treatment with risperidone or haloperidol in first-episode schizophrenia: 8-week results of a randomized controlled trial within the German Research Network on Schzophrenia. Int J Neuropsychoph 11(7):985–997Google Scholar
  68. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142Google Scholar
  69. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J Immunol Methods 16:55–63Google Scholar
  70. Muthu MS, Singh S (2008) Studies on biodegradable polymeric nanoparticles of risperidone: in vitro and in vivo evaluation. Nanomedicine 3:305–319Google Scholar
  71. Muthu MS, Singh S (2009) Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine 4:105–118Google Scholar
  72. Newcomer JW (2005) Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review. CNS Drugs 19(1):1–93Google Scholar
  73. Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Int Med 267:89–105Google Scholar
  74. Ourique AF, Melero A, Silva CB, Schaefer UF, Pohlmann AR, Guterres SS, Lehr CM, Kostka KH, Beck RC (2011) Improved photostability and reduced skin permeation of tretinoin: development of a semisolid nanomedicine. Eur J Pharm Biopharm 79:95–101Google Scholar
  75. Padh H (2005) Vitamin C: newer insights into its biochemical functions. Cell Mol Biol Lett 10:255–264Google Scholar
  76. Parihk T, Bommana MM, Squillante E (2010) Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain. Eur J Pharm Biopharm 74:442–450Google Scholar
  77. Ponto T, Ismail NI, Abdul Majeed AB, Marmaya NH, Zakaria ZA (2010) A prospective study on the pattern of medication use for schizophrenia in the outpatient pharmacy department, hospital Tengku Ampuan Rahimah, Selangor, Malaysia. Methods Find Exp Clin 32(6):427–432Google Scholar
  78. Primo FL, Rodrigues MM, Simioni AR, Lacava ZG, Morais PC, Tedesco AC (2008) Photosensitizer-loaded magnetic nanoemulsion for use in synergic photodynamic and magnetohyperthermia therapies of neoplastic cells. J Nanosci Nanotechnol 8:5873–5877Google Scholar
  79. Prince JA, Hassin MS, Oreland L (1997) Neuroleptic-induced mitochondrial enzyme alterations in the rat brain. J Pharmacol Exp Ther 280:261–267Google Scholar
  80. Rodrigues MMA, Simioni AR, Primo FL, Siqueira-Moura MP, Morais PC, Tedesco AC (2009) Preparation, characterization and in vitro cytotoxicity of BSA-based nanospheres containing nanosized magnetic particles and/or photosensitizer. J Magn Magn Mater 321:1600–1603Google Scholar
  81. Rollema H, Skolnik M, D’Engelbronner J, Igarashi K, Usuki E, Castagnoli N (1994) MPP(+)-like neurotoxicity of a pyridinium metabolite derived from haloperidol: in vivo microdialysis and in vitro mitochondrial studies. J Pharmacol Exp Ther 268:380–387Google Scholar
  82. Sagara Y (1998) Induction of reactive oxygen species in neurons by haloperidol. J Neurochem 71(3):1002–1012Google Scholar
  83. Sallie R, Tredger JM, Williams R (1991) Drugs and the liver part 1: testing liver function. Biopharm Drug Dispos 12:251–259Google Scholar
  84. Santos NP, Nascimento SC, Wanderley MS, Pontes-Filho NT, da Silva JF, de Castro CM, Pereira EC, da Silva NH, Honda NK, Santos-Magalhães NS (2006) Nanoencapsulation of usnic acid: an attempt to improve antitumour activity and reduce hepatotoxicity. Eur J Pharm Biopharm 64:154–160Google Scholar
  85. Sassa S (1982) Delta-aminolevulinic acid dehydratase assay. Enzyme 28:133–145Google Scholar
  86. Sawas AH, Gilbert JC (1985) Lipid peroxidation as a possible mechanism for the neurotoxic and nephrotoxic effects of a combination of lithium carbonate and haloperidol. Arch Int Pharmacodyn T 276(2):301–312Google Scholar
  87. Schiff D, Chan G, Poznansky MJ (1985) Bilirubin toxicity in neural cell lines N115 and NBR10A. Pediatr Res 19(9):908–911Google Scholar
  88. Seju U, Kumar A, Sawant KK (2011) Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta Biomater 7(12):4169–4176Google Scholar
  89. Silva AC, González-Mira E, García ML, Egea MA, Fonseca J, Silva R, Santos D, Souto EB, Ferreira D (2011) Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloid Surf B 86:158–165Google Scholar
  90. Silveira ID (2007) O efeito do uso crônico de haloperidol associado à dieta com alto teor de lipídio na peroxidação lipídica no fígado de ratos wistar. Dissertação (Mestrado em Bioquímica). Universidade Federa de Santa Maria, Santa MariaGoogle Scholar
  91. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantification of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191Google Scholar
  92. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20Google Scholar
  93. Trifirò G, Gambassi G, Sen EF, Caputi AP, Bagnardi V, Brea J, Sturkenboom MC (2010) Association of community-acquired pneumonia with antipsychotic drug use in elderly patients. A nested case-control study. Ann Intern Med 7:418–427Google Scholar
  94. Usuki E, Pearce R, Parkinson A, Castagnol N (1996) Studies on the conversion of haloperidol and its tetrahydropyridine dehydration product to potentially neurotoxic pyridinium metabolites by human liver microsomes. Chem Res Toxicol 9(4):800–806Google Scholar
  95. Uyanik A, Unal D, Halici Z, Cetinkaya R, Altunkaynak BZ, Keles ON, Polat B, Topal A, Colak S, Suleyman H, Unal B (2009) Does haloperidol have side effects on histological and stereological structure of the rat kidneys? Ren Failure 31(7):573–581Google Scholar
  96. Van Cauteren H, Vanparys P, de Meester C, Lambotte-Vandepaer M, Vandenberghe J, Marsboom R (1987) Mutagenic and leukemogenic activity of haloperidol: a negative study. Drug Chem Toxicol 10:311–327Google Scholar
  97. Venkateswarlu V, Manjunath K (2004) Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release 95:627–638Google Scholar
  98. Venturini CG, Jäger E, Oliveira CP, Bernardi A, Battastini AMO, Guterres SS, Pohlmann AR (2011) Formulation of lipid core nanocapsules. Colloid Surface 375:200–208Google Scholar
  99. Vivek K, Reddy H, Murthy RSR (2007) Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. Pharm Sci Tech 8:16–24Google Scholar
  100. Wei Z, Mousseau DD, Dai Y, Cao X, Li XM (2006) Haloperidol induces apoptosis via the sigma2 receptor system and Bcl-XS. J Pharmacogenomics 6:279–288Google Scholar
  101. Wright AM, Bempong J, Kirby ML, Barlow RL, Bloomquist JR (1998) Effects of haloperidol metabolites on neurotransmitter uptake and release: possible role in neurotoxicity and tardive dyskinesia. Brain Res 788(1–2):215–222Google Scholar
  102. Yokoyama M, Okano T (1996) Targetable drug carriers: present status and a future perspective. Adv Drug Deliver Rev 21:77–80Google Scholar
  103. Yu BP (1994) Cellular defenses against damage from reactive oxygen species. Physiol Rev 74:139–162Google Scholar
  104. Zimmerman HJ (1999) Neuroleptic drugs. In: Zimmerman HJ (ed) Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver, 2nd edn. Lippincott, Philadelphia, pp 483–491Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Katiane Roversi
    • 1
  • Dalila M. Benvegnú
    • 3
    Email author
  • Karine Roversi
    • 2
  • Fabíola Trevizol
    • 1
  • Luciana T. Vey
    • 2
  • Fabiana Elias
    • 3
  • Rafael Fracasso
    • 5
  • Mariana H. Motta
    • 4
  • Roseane F. Ribeiro
    • 4
  • Bruna dos S. Hausen
    • 4
  • Rafael N. Moresco
    • 4
  • Solange C. Garcia
    • 5
  • Cristiane B. da Silva
    • 4
  • Marilise E. Burger
    • 1
    • 2
    Email author
  1. 1.Programa de Pós-Graduação em FarmacologiaUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Departamento de Fisiologia e Farmacologia, Centro de Ciências da SaúdeUniversidade Federal de Santa Maria (UFSM)Santa MariaBrazil
  3. 3.Bioquímica e FarmacologiaUniversidade Federal da Fronteira Sul (UFFS)RealezaBrazil
  4. 4.Programa de Pós-Graduação em Ciências FarmacêuticasUniversidade Federal de Santa MariaSanta MariaBrazil
  5. 5.Programa de Pós-Graduação em Ciências FarmacêuticasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations