Plasma synthesis of titanium nitride, carbide and carbonitride nanoparticles by means of reactive anodic arc evaporation from solid titanium

  • D. KieslerEmail author
  • T. Bastuck
  • R. Theissmann
  • F. E. Kruis
Research Paper


Plasma methods using the direct evaporation of a transition metal are well suited for the cost-efficient production of ceramic nanoparticles. In this paper, we report on the development of a simple setup for the production of titanium-ceramics by reactive anodic arc evaporation and the characterization of the aerosol as well as the nanopowder. It is the first report on TiC X N1 − X synthesis in a simple anodic arc plasma. By means of extensive variations of the gas composition, it is shown that the composition of the particles can be tuned from titanium nitride over a titanium carbonitride phase (TiC X N1 − X ) to titanium carbide as proven by XRD data. The composition of the plasma gas especially a very low concentration of hydrocarbons around 0.2 % of the total plasma gas is crucial to tune the composition and to avoid the formation of free carbon. Examination of the particles by HR-TEM shows that the material consists mostly of cubic single crystalline particles with mean sizes between 8 and 27 nm.


Anodic arc Plasma synthesis Ceramic nanopowder Aerosol synthesis TiC titaniumcarbide TiN titaniumnitride TiCN titaniumcarbonitride 



This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the Collaborative Research Centre on “Nanoparticles from the gas phase: formation, structure and properties” (SFB 445).


  1. Aigner K, Lengauer W, Rafaja D, Ettmayer P (1994) Lattice parameters and thermal expansion of Ti(CxN1-x), Zr(CxN1-x), Hf(CxN1-x) and TiN1-x from 298 to 1473 K as investigated by high-temperature X-ray diffraction. J Alloy Compd 215(1–2):121–126. doi: 10.1016/0925-8388(94)90828-1 CrossRefGoogle Scholar
  2. Alekseev NV, Samokhin AV, Tsvetkov YV (1999) Synthesis of titanium carbonitride nanopowder by titanium tetrachloride treatment in hydrocarbon-air plasma. High Energy Chem 33(3):194–197Google Scholar
  3. Alexandrescu R, Borsella E, Botti S, Cesile MC, Martelli S, Giorgi R, Turtù S, Zappa G (1997) Synthesis of TiC and SiC/TiC nanocrystalline powders by gas-phase laser-induced reaction. J Mater Sci 32(21):5629–5635. doi: 10.1023/A:1018640911556 CrossRefGoogle Scholar
  4. EFSA Panel on food contact materials enzymes (CEF) (2012) Scientific opinion on the safety evaluation of the substance, titanium nitride, nanoparticles, for use in food contact materials. EFSA J 10(3):2641–2649. doi: 10.2903/j.efsa.2012.2641 Google Scholar
  5. Feng X, Shi L (2005) Facile synthesis of nanocrystalline titanium carbonitride via a chemical metathesis route. Chem Lett 34(7):1002–1003. doi: 10.1246/cl.2005.1002 CrossRefGoogle Scholar
  6. Grabis J, Zalite I (2005) Preparation of Ti (N, C) based nanosized powders and their densification. Mater Sci 11(4):372–375Google Scholar
  7. Guu YY, Lin JF, Ai C (1997) The tribological characteristics of titanium nitride, titanium carbonitride and titanium carbide coatings. Thin Solid Films 302(1–2):193–200. doi: 10.1016/S0040-6090(96)09546-6 CrossRefGoogle Scholar
  8. Ikegami A, Kimura Y, Suzuki H, Sato T, Tanigaki T, Kido O, Kurumada M, Saito Y, Kaito C (2003) Growth process of TiC clusters from Ti nanoparticles with evaporated carbon layer. Surf Sci 540(2–3):395–400. doi: 10.1016/S0039-6028(03)00875-6 CrossRefGoogle Scholar
  9. Inoue A, Kim BG, Nosaki K, Yamaguchi T, Masumoto T (1992) Production of a TiN film with nanoscale particle size by a combined method of plasma-alloy reaction and spray deposition. J Mater Sci Lett 11(12):865–867. doi: 10.1007/BF00730489 CrossRefGoogle Scholar
  10. Ishigaki T, Sato T, Moriyoshi Y, Boulos MI (1995) Influence of plasma modification of titanium carbide powder on its sintering properties. J Mater Sci Lett 14(23):1694–1697. doi: 10.1007/BF00422678 CrossRefGoogle Scholar
  11. Ishigaki T, Moriyoshi Y, Watanabe T, Kanzawa A (1996) Thermal plasma treatment of titanium carbide powders: part II. In-flight formation of carbon-site vacancies and subsequent nitridation in titanium carbide powders during induction plasma treatment. J Mater Res 11(11):2811–2824. doi: 10.1557/JMR.1996.0356 CrossRefGoogle Scholar
  12. Ishizaki K, Egashira T, Tanaka K, Celis PB (1989) Direct production of ultra-fine nitrides (Si3N4 and AIN) and carbides (SiC, WC and TiC) powders by the arc plasma method. J Mater Sci 24(10):3553–3559. doi: 10.1007/BF02385739 CrossRefGoogle Scholar
  13. Iwama S, Hayakawa K, Arizumi T (1982) Ultrafine powders of TiN and AlN produced by a reactive gas evaporation technique with electron beam heating. J Cryst Growth 56(2):265–269. doi: 10.1016/0022-0248(82)90443-2 CrossRefGoogle Scholar
  14. Jhi S, Ihm J, Loule SG, Cohen ML (1999) Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nature 399(6732):132–134. doi: 10.1038/20148 CrossRefGoogle Scholar
  15. Jiao J, Seraphin S (1998) Carbon encapsulated nanoparticles of Ni Co, Cu, and Ti. J Appl Phys 83(5):2442–2448. doi: 10.1063/1.367004 CrossRefGoogle Scholar
  16. Leciejewicz J (1961) A note on the structure of tungsten carbide. Acta Cryst 14(2):200. doi: 10.1107/S0365110X6100067X CrossRefGoogle Scholar
  17. Leconte Y, Maskrot H, Herlin-Boime N, Porterat D, Reynaud C, Gierlotka S, Swiderska-Sroda A, Vicens J (2006) TiC nanocrystal formation from carburization of laser-grown Ti/O/C nanopowders for nanostructured ceramics. J Phys Chem B 110(1):158–163. doi: 10.1021/jp054471p CrossRefGoogle Scholar
  18. Lee D, Ahn J, Chung H (2007) Synthesis and nitrogen stability of ultrafine titanium carbonitride particles. J Mater Res 22(01):233–237. doi: 10.1557/jmr.2007.0024 CrossRefGoogle Scholar
  19. Leparoux M, Kihn Y, Paris S, Schreuders C (2008) Microstructure analysis of RF plasma synthesized TiCN nanopowders. Int J Refract Met H 26(4):277–285. doi: 10.1016/j.ijrmhm.2007.06.003 CrossRefGoogle Scholar
  20. Levi G, Kaplan WD, Bamberger M (1998) Structure refinement of titanium carbonitride (TiCN). Mater Lett 35(5–6):344–350. doi: 10.1016/S0167-577X(97)00276-0 CrossRefGoogle Scholar
  21. Li Y, Yao Y, Shao W, Liu F, Kang Y, Yin G, Huang Z, Liao X (2009) Preparation of titanium carbonitride nanoparticles from a novel refluxing-derived precursor. Mater Lett 63(22):1904–1906. doi: 10.1016/j.matlet.2009.05.031 CrossRefGoogle Scholar
  22. Lutterotti L (2010) Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. X-ray techniques for advanced materials, nanostructures and thin films: from laboratory sources to synchrotron radiation. In: Proceedings of the EMRS 2009 Spring Meeting—Symposium R 268(3–4):334–340. doi:  10.1016/j.nimb.2009.09.053
  23. Lutterotti L, Chateigner D, Ferrari S, Ricote J (2004) Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. In: Proceedings of symposium m on optical and x-ray metrology for advanced device materials characterization, of the E-MRS 2003 Spring Conference 450(1):34–41. doi:  10.1016/j.tsf.2003.10.150
  24. Mahoney W, Andres RP (1995) Aerosol synthesis of nanoscale clusters using atmospheric arc evaporation. Mater Sci Eng A 204(1–2):160–164. doi: 10.1016/0921-5093(95)09953-0 CrossRefGoogle Scholar
  25. Manoj Kumar BV, Basu B, Vizintin J, Kalin M (2008) Tribochemistry in sliding wear of TiCN-Ni-based cermets. J Mater Res 23(5):1214–1227. doi: 10.1557/jmr.2008.0165 CrossRefGoogle Scholar
  26. Mehta P, Singh AK, Kingon AI (1991) Nonthermal microwave plasma synthesis of crystalline titanium oxide and titanium nitride nanoparticles. MRS Proc 249:153–158. doi: 10.1557/PROC-249-153 CrossRefGoogle Scholar
  27. Mitrofanov B, Mazza A, Pfender E, Ronsheim P, Toth LE (1981) D.C. arc plasma titanium and vanadium compound synthesis from metal powders and gas phase non-metals. Mater Sci Eng 48(1):21–26. doi: 10.1016/0025-5416(81)90062-8 CrossRefGoogle Scholar
  28. Mondal B, Das P, Singh S (2008) Advanced WC–Co cermet composites with reinforcement of TiCN prepared by extended thermal plasma route. Mater Sci Eng A 498(1–2):59–64. doi: 10.1016/j.msea.2007.10.127 CrossRefGoogle Scholar
  29. Monteverde F, Medri V, Bellosi A (2001) Synthesis of ultrafine titanium carbonitride powders. Appl Organomet Chem 15(5):421–429. doi: 10.1002/aoc.164 CrossRefGoogle Scholar
  30. Mu Y, Wang M, Yu D (2011) Synthesis of Ti(CN) powders by combustion reaction from Ti powder and a novel carbon–nitrogen precursor. Int J Refract Met H 29(2):326–328. doi: 10.1016/j.ijrmhm.2010.10.001 CrossRefGoogle Scholar
  31. Pfender E (1999) Thermal plasma technology: where do we stand and where are we going? Plasma Chem Plasma Proc 19(1):1–31. doi: 10.1023/A:1021899731587 CrossRefGoogle Scholar
  32. Rietveld H (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22(1):151–152. doi: 10.1107/S0365110X67000234 CrossRefGoogle Scholar
  33. Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71. doi: 10.1107/S0021889869006558 CrossRefGoogle Scholar
  34. Seplyarskii BS, Brauer GB, Tarasov AG (2011) Combustion of the gasless system Ti + 0.5C in a nitrogen coflow. Combust Explos Shock 47(3):294–301. doi: 10.1134/S0010508211030063 CrossRefGoogle Scholar
  35. Shen G, Tang K, An C, Yang Q, Wang C, Qian Y (2002) A simple route to prepare nanocrystalline titanium carbonitride. Mater Res Bull 37(6):1207–1211. doi: 10.1016/S0025-5408(02)00736-5 CrossRefGoogle Scholar
  36. Stein M, Kiesler D, Kruis FE (2013) Effect of carrier gas composition on transferred arc metal nanoparticle synthesis. J Nanopart Res 15(1):1–14. doi: 10.1007/s11051-012-1400-9 CrossRefGoogle Scholar
  37. Tanaka K, Ishizaki K, Yumoto S, Egashira T, Uda M (1987) Production of ultra-fine silicon powder by the arc plasma method. J Mater Sci 22(6):2192–2198. doi: 10.1007/s11051-012-1400-9 CrossRefGoogle Scholar
  38. Thompson GS, Harmer MP (2011) Nanoscale ceramic composites. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P (eds) Encyclopedia of materials: science and technology, 2nd edn. Elsevier, Oxford, pp 5927–5930Google Scholar
  39. Wang Y, Chen K, Zhou H (2005) Combustion synthesis of Ti(C,N) powder. Key Eng Mat 280–283:1421–1424. doi: 10.4028/ CrossRefGoogle Scholar
  40. Yang Q, Lengauer W, Koch T, Scheerer M, Smid I (2000) Hardness and elastic properties of Ti(CxN1-x), Zr(CxN1-x) and Hf(CxN1-x). J Alloy Compd 309(1–2):L5. doi: 10.1016/S0925-8388(00)01057-4 CrossRefGoogle Scholar
  41. Yatsui K, Grigoriu C, Masugata K, Jiang W, Sonegawa T (1997) Preparation of thin films and nanosize powders by intense, pulsed ion beam evaporation. Jpn J Appl Phys 1 36(7 SUPPL. B):4928–4934. doi: 10.1143/JJAP.36.4928 CrossRefGoogle Scholar
  42. Yeh C, Chen Y (2005) Direct formation of titanium carbonitrides by SHS in nitrogen. Ceram Int 31(5):719–729. doi: 10.1016/j.ceramint.2004.07.013 CrossRefGoogle Scholar
  43. Yin F, Zhou L, Xu Z, Xue B, Jiang X (2009) Synthesis of nanocrystalline titanium carbonitride during milling of titanium and carbon in nitrogen atmosphere. J Alloy Compd 470(1–2):369–374. doi: 10.1016/j.jallcom.2008.02.073 CrossRefGoogle Scholar
  44. Young RM, Pfender E (1985) Generation and behavior of fine particles in thermal plasmas-A review. Plasma Chem Plasma Process 5(1):1–37. doi: 10.1007/BF00567907 CrossRefGoogle Scholar
  45. Zhang JP, Shi LY, Feng X (2008) Low pressure pyrolysis of melamine: novel route to preparing titanium carbonitride nanocrystals. Mater Technol 23(3):158–160. doi: 10.1179/175355508X310197 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • D. Kiesler
    • 1
    Email author
  • T. Bastuck
    • 1
    • 2
  • R. Theissmann
    • 1
  • F. E. Kruis
    • 1
  1. 1.Institute of Technology for Nanostructures (NST) and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenDuisburgGermany
  2. 2.Federal-Mogul Burscheid GmbH, Rings & LinersBurscheidGermany

Personalised recommendations