Kinetics of sub-2 nm TiO2 particle formation in an aerosol reactor during thermal decomposition of titanium tetraisopropoxide

  • Yang Wang
  • Pai Liu
  • Jiaxi Fang
  • Wei-Ning Wang
  • Pratim BiswasEmail author
Research Paper


Particle size distribution measurements from differential mobility analyzers (DMAs) can be utilized to study particle formation mechanisms. However, knowledge on the initial stages of particle formation is incomplete, since in conventional DMAs, the Brownian broadening effect limits their ability to measure sub-2 nm-sized particles. Previous studies have demonstrated the capability of high-flow DMAs, such as the Half Mini DMAs, to measure sub-2 nm particles with significantly higher resolutions than conventional DMAs. A Half Mini DMA was applied to study the kinetics of sub-2 nm TiO2 nanoparticle formation in a furnace aerosol reactor, through the thermal decomposition of titanium tetraisopropoxide (TTIP). The influence of parameters such as reaction temperature, residence time, precursor concentration, and the introduction of bipolar charges on sub-2 nm particle size distributions were studied. A first order reaction rate derived from the dependence of size distributions on reaction temperature matched well with existing literature data. The change in precursor residence time and precursor concentration altered the size distributions correspondingly, indicating the occurrence of TTIP thermal decomposition. The introduction of bipolar charges in aerosol reactors enhanced the consumption of reactants, possibly due to ion-induced nucleation and induced dipole effects.


Sub-2 nm particles Differential mobility analyzer (DMA) Size distribution Furnace aerosol reactor Titanium tetraisopropoxide (TTIP) Particle formation and growth 



The authors thank Professor Michel Attoui from University Paris Est Creteil for his ideas and kind help on building the Half Mini DMA setup. Y.W. thanks Dr. Chongai Kuang from Brookhaven National Laboratory for the opportunity to discuss experimental results. This work was supported by the Solar Energy Research Institute for India and the United States (SERIIUS), funded jointly by the U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program, under Subcontract DE-AC36-08GO28308 to the National Renewable Energy Laboratory, Golden, Colorado) and the Government of India, through the Department of Science and Technology under Subcontract IUSSTF/JCERDC-SERIIUS/2012.


  1. Adachi M, Tsukui S, Okuyama K (2003) Nanoparticle formation mechanism in CVD reactor with ionization of source vapor. J Nanopart Res 5(1–2):31–37CrossRefGoogle Scholar
  2. Adachi M, Kusumi M, Tsukui S (2004) Ion-induced nucleation in nanoparticle synthesis by ionization chemical vapor deposition. Aerosol Sci Technol 38(5):496–505CrossRefGoogle Scholar
  3. Ahn K, Sohn S, Jung C, Choi M (2001) In situ measurement of nano particle size distribution and charge characteristics in H2/O2/TEOS diffusion flame. Scripta Mater 44(8):1889–1892CrossRefGoogle Scholar
  4. Attoui M, Paragano M, Cuevas J, de la Mora JF (2011) Tandem DMA generation of strictly monomobile 1–3.5 nm particle standards. Aerosol Sci Technol 47(5):499–511CrossRefGoogle Scholar
  5. Bradbury NE (1932) The absolute values of the mobility of gaseous ions in pure gases. Phys Rev 40(4):508CrossRefGoogle Scholar
  6. Chadha TS, Tripathi AM, Sagar M, Biswas P (2014) One‐dimensional, additive‐free, single‐crystal TiO2 nanostructured anodes synthesized by a single‐step aerosol process for high‐rate lithium‐ion batteries. Energy Technol 2(11):906–911Google Scholar
  7. Cho K, Biswas P (2006) Sintering rates for pristine and doped titanium dioxide determined using a tandem differential mobility analyzer system. Aerosol Sci Technol 40(5):309–319CrossRefGoogle Scholar
  8. Cho K, Hogan CJ Jr, Biswas P (2007) Study of the mobility, surface area, and sintering behavior of agglomerates in the transition regime by tandem differential mobility analysis. J Nanopart Res 9(6):1003–1012CrossRefGoogle Scholar
  9. Eggersdofer ML, Gröhn AJ, Sorensen CM, McMurry PH, Pratsinis SE (2012) Mass-mobility characterization of flame-made ZrO2 aerosols: Primary particle diameter and extent of aggregation. J Colloid Interface Sci 387(1):12–23CrossRefGoogle Scholar
  10. Eiceman GA, Karpas Z, Hill HH Jr (2013) Ion mobility spectrometry. CRC Press, Boca RatonGoogle Scholar
  11. Enghoff M, Svensmark H (2008) The role of atmospheric ions in aerosol nucleation—a review. Atmos Chem Phys 8(16):4911–4923CrossRefGoogle Scholar
  12. Fang J, Leavey A, Biswas P (2014a) Controlled studies on aerosol formation during biomass pyrolysis in a flat flame reactor. Fuel 116:350–357CrossRefGoogle Scholar
  13. Fang J, Wang Y, Attoui M, Chadha TS, Ray J, Wang WN, Jun YS, Biswas P (2014b) Measurement of sub 2 nm clusters of pristine and composite metal oxides during nanomaterials synthesis in flame aerosol reactors. Anal Chem 86(15):7523–7529CrossRefGoogle Scholar
  14. Fernandez de la Mora J (2011) Electrical classification and condensation detection of sub‐3‐nm aerosols. In: Aerosol measurement: principles, techniques, and applications, 3rd edn, pp 697–721Google Scholar
  15. Fernández de la Mora J, Kozlowski J (2013) Hand-held differential mobility analyzers of high resolution for 1–30 nm particles: design and fabrication considerations. J Aerosol Sci 57:45–53CrossRefGoogle Scholar
  16. Freund H, Pacchioni G (2008) Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. Chem Soc Rev 37(10):2224–2242CrossRefGoogle Scholar
  17. Fuchs N (1963) On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Geofis Pura Appl 56(1):185–193CrossRefGoogle Scholar
  18. Gopalakrishnan R, Meredith MJ, Larriba-Andaluz C, Hogan CJ Jr (2013) Brownian dynamics determination of the bipolar steady state charge distribution on spheres and non-spheres in the transition regime. J Aerosol Sci 63:126–145CrossRefGoogle Scholar
  19. Heim M, Attoui M, Kasper G (2010) The efficiency of diffusional particle collection onto wire grids in the mobility equivalent size range of 1.2–8 nm. J Aerosol Sci 41(2):207–222CrossRefGoogle Scholar
  20. Hogan CJ Jr, Biswas P, Chen DR (2009) Charged droplet dynamics in the submicrometer size range. J Phys Chem B 113(4):970–976CrossRefGoogle Scholar
  21. Hontañón E, Rouenhoff M, Azabal A, Ramiro E, Kruis FE (2013) Assessment of a cylindrical and a rectangular plate differential mobility analyzer for size fractionation of nanoparticles at high aerosol flow rates. Aerosol Sci Technol 48(3):333–339CrossRefGoogle Scholar
  22. Jiang J, Chen DR, Biswas P (2007) Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology. Nanotechnology 18(28):285603CrossRefGoogle Scholar
  23. Jiang Y, Wang WN, Biswas P, Fortner J (2014) Facile aerosol synthesis and characterization of ternary crumpled graphene-TiO2-magnetite nanocomposites for advanced water treatment. ACS Appl Mater Inter 6(14):11766–11774CrossRefGoogle Scholar
  24. Junninen H et al (2010) A high-resolution mass spectrometer to measure atmospheric ion composition. Atmos Meas Tech 3(4):1039–1053CrossRefGoogle Scholar
  25. Kallinger P, Setiner G, Szymanski W (2012) Characterization of four different bipolar charging devices for nanoparticle charge conditioning. J Nanopart Res 14(6):1–8CrossRefGoogle Scholar
  26. Kilpatrick W (1971) An experimental mass-mobility relation for ions in air at atmospheric pressure. Proc Annu Conf Mass Spectrosc 19:320–325Google Scholar
  27. Kim S, Betty K, Karasek F (1978) Mobility behavior and composition of hydrated positive reactant ions in plasma chromatography with nitrogen carrier gas. Anal Chem 50(14):2006–2012CrossRefGoogle Scholar
  28. Kim S, Woo K, Liu B, Zachariah M (2005) Method of measuring charge distribution of nanosized aerosols. J Colloid Interface Sci 282(1):46–57CrossRefGoogle Scholar
  29. Knutson E, Whitby K (1975) Aerosol classification by electric mobility: apparatus, theory, and applications. J Aerosol Sci 6(6):443–451CrossRefGoogle Scholar
  30. Larriba C, Hogan CJ Jr (2013) Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models. J Phys Chem A 117(19):3887–3901CrossRefGoogle Scholar
  31. Larriba C, Hogan CJ Jr, Attoui M, Borrajo R, Garcia JF, de la Mora JF (2011) The mobility–volume relationship below 3.0 nm examined by tandem mobility–mass measurement. Aerosol Sci Technol 45(4):453–467CrossRefGoogle Scholar
  32. Mädler L, Stark WJ, Pratsinis SE (2002) Flame-made ceria nanoparticles. J Mater Res 17(06):1356–1362CrossRefGoogle Scholar
  33. Mäkelä JM, Jokinen V, Mattila T, Ukkonen A, Keskinen J (1996) Mobility distribution of acetone cluster ions. J Aerosol Sci 27(2):175–190CrossRefGoogle Scholar
  34. Manninen H et al (2011) Characterisation of corona-generated ions used in a neutral cluster and air ion spectrometer (NAIS). Atmos Meas Tech Discuss 4(2):2099–2125CrossRefGoogle Scholar
  35. Maricq M (2004) Size and charge of soot particles in rich premixed ethylene flames. Combust Flame 137(3):340–350CrossRefGoogle Scholar
  36. Maricq MM (2008) Bipolar diffusion charging of soot aggregates. Aerosol Sci Technol 42(4):247–254CrossRefGoogle Scholar
  37. Moravec P, Smolík J, Levdansky V (2001) Preparation of TiO2 fine particles by thermal decomposition of titanium tetraisopropoxide vapor. J Mater Sci Lett 20(22):2033–2037CrossRefGoogle Scholar
  38. Nakaso K, Okuyama K, Shimada M, Pratsinis SE (2003) Effect of reaction temperature on CVD-made TiO2 primary particle diameter. Chem Eng Sci 58(15):3327–3335CrossRefGoogle Scholar
  39. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized. Nature 353:737–740CrossRefGoogle Scholar
  40. Okuyama K, Jeung J-T, Kousaka Y, Nguyen HV, Wu JJ, Flagan RC (1989) Experimental control of ultrafine TiO2 particle generation from thermal decomposition of titanium tetraisopropoxide vapor. Chem Eng Sci 44(6):1369–1375CrossRefGoogle Scholar
  41. Okuyama K, Ushio R, Kousaka Y, Flagan RC, Seinfeld JH (1990) Particle generation in a chemical vapor deposition process with seed particles. AIChE J 36(3):409–419CrossRefGoogle Scholar
  42. Ouyang H, Larriba C, Oberreit D, Hogan CJ Jr (2013) The collision cross sections of iodide salt cluster ions in air via differential mobility analysis-mass spectrometry. J Am Soc Mass Spectrom 24(12):1833–1847CrossRefGoogle Scholar
  43. Romay FJ, Pui DY (1992) Free electron charging of ultrafine aerosol particles. J Aerosol Sci 23(7):679–692CrossRefGoogle Scholar
  44. Sahu M, Biswas P (2011) Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor. Nanoscale Res Lett 6(1):1–14Google Scholar
  45. Sgro L, De Filippo A, Lanzuolo G, D’Alessio A (2007) Characterization of nanoparticles of organic carbon (NOC) produced in rich premixed flames by differential mobility analysis. P Combust Inst 31(1):631–638CrossRefGoogle Scholar
  46. Siefering K, Griffin G (1990) Growth kinetics of CVD TiO2: influence of carrier gas. J Electrochem Soc 137(4):1206–1208CrossRefGoogle Scholar
  47. Steiner G, Reischl GP (2012) The effect of carrier gas contaminants on the charging probability of aerosols under bipolar charging conditions. J Aerosol Sci 54:21–31CrossRefGoogle Scholar
  48. Steiner G, Jokinen T, Junninen H, Sipilä M, Petäjä T, Worsnop D, Reischl G, Kulmala M (2013) High resolution mobility and mass spectrometry of negative ions produced in an 241Am aerosol charger. Aerosol Sci Technol 48(3):261–270CrossRefGoogle Scholar
  49. Stolzenburg MR (1988) An ultrafine aerosol size distribution measuring system. Ph.D. thesis, University of MinnesotaGoogle Scholar
  50. Stolzenburg MR, McMurry PH (2008) Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function. Aerosol Sci Technol 42(6):421–432CrossRefGoogle Scholar
  51. Takahashi Y, Suzuki H, Nasu M (1985) Rutile growth at the surface of TiO2 films deposited by vapour-phase decomposition of isopropyl titanate. J Chem Soc 81(12):3117–3125Google Scholar
  52. Thimsen E, Rastgar N, Biswas P (2008) Nanostructured TiO2 films with controlled morphology synthesized in a single step process: Performance of dye-sensitized solar cells and photo watersplitting. J Phys Chem C 112(11):4134–4140CrossRefGoogle Scholar
  53. Ude S, De la Mora JF (2005) Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides. J Aerosol Sci 36(10):1224–1237CrossRefGoogle Scholar
  54. Vishnyakov V, Kiro S, Ennan A (2011) Heterogeneous ion-induced nucleation in thermal dusty plasmas. J Phys D 44(21):215201CrossRefGoogle Scholar
  55. Wang SC, Flagan RC (1990) Scanning electrical mobility spectrometer. Aerosol Sci Technol 13(2):230–240CrossRefGoogle Scholar
  56. Wang WN, An WJ, Ramalingam B, Mukherjee S, Niedzwiedzki DM, Gangopadhyay S, Biswas P (2012) Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J Am Chem Soc 134(27):11276–11281CrossRefGoogle Scholar
  57. Wang Y, Fang J, Attoui M, Chadha TS, Wang W-N, Biswas P (2014) Application of Half Mini DMA for sub 2 nm particle size distribution measurement in an electrospray and a flame aerosol reactor. J Aerosol Sci 71:52–64CrossRefGoogle Scholar
  58. Wegner K, Pratsinis SE (2003) Scale-up of nanoparticle synthesis in diffusion flame reactors. Chem Eng Sci 58(20):4581–4589CrossRefGoogle Scholar
  59. Wiedensohler A, Fissan H (1991) Bipolar charge distributions of aerosol particles in high-purity argon and nitrogen. Aerosol Sci Technol 14(3):358–364CrossRefGoogle Scholar
  60. Winkler PM, Steiner G, Vrtala A, Vehkamäki H, Noppel M, Lehtinen K, Reischl G, Wagner P, Kulmala M (2008) Heterogeneous nucleation experiments bridging the scale from molecular ion clusters to nanoparticles. Science 319(5868):1374–1377CrossRefGoogle Scholar
  61. Zeleny J (1931) The aging of ions in air and nitrogen. Phys Rev 38(5):969CrossRefGoogle Scholar
  62. Zhang X, Zheng H, Battaglia V, Axelbaum RL (2011a) Electrochemical performance of spinel LiMn2O4 cathode materials made by flame-assisted spray technology. J Power Sources 196(7):3640–3645CrossRefGoogle Scholar
  63. Zhang Y, Li S, Yan W, Yao Q, Stephen DT (2011b) Role of dipole–dipole interaction on enhancing Brownian coagulation of charge-neutral nanoparticles in the free molecular regime. J Chem Phys 134(8):084501CrossRefGoogle Scholar
  64. Zhao B, Yang Z, Wang J, Johnston MV, Wang H (2003) Analysis of soot nanoparticles in a laminar premixed ethylene flame by scanning mobility particle sizer. Aerosol Sci Technol 37(8):611–620CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yang Wang
    • 1
  • Pai Liu
    • 1
  • Jiaxi Fang
    • 1
  • Wei-Ning Wang
    • 1
    • 2
  • Pratim Biswas
    • 1
    Email author
  1. 1.Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental & Chemical EngineeringWashington University in St. LouisSt. LouisUSA
  2. 2.Department of Mechanical and Nuclear EngineeringVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations