Differential contrast of gold nanorods in dual-band OCT using spectral multiplexing

  • Wa’el Al Rawashdeh
  • Thomas Weyand
  • Stefan Kray
  • Markus Lenz
  • Anne Buchkremer
  • Felix Spöler
  • Ulrich Simon
  • Martin Möller
  • Fabian Kiessling
  • Wiltrud Lederle
Research Paper

Abstract

In optical coherence tomography (OCT), differential contrast can be generated by resonant nanoparticles using spectral multiplexing. Differential contrast can be of interest for medical applications for improving detection specificity of structures with low endogenous contrast. Differential contrast has been shown using OCT systems with one bandwidth; however, this requires post-processing that is time consuming and reduces image resolution. In this study, we used a dual-band OCT prototype system with two far separated bandwidths in the clinically relevant optical window, and in search for the optimal differential contrast-generating particles for this prototype system, three different gold nanorods (AuNR) samples were investigated. The samples with different particle volume, aspect ratio, and absorption-maximum were imaged in a highly scattering phantom and on chicken muscle. In vitro, differential contrast was observed for the nanorods large (NRL) sample having the absorption-maximum within one bandwidth of the OCT and an average length of 75 nm. For the smaller AuNR (48 nm length) with comparable absorption-maximum, the obtained signal intensities were too low for being visible, although differences in signal intensities between both bandwidths could be measured. NRL optimal concentration for differential contrast using this prototype system is between 100 and 500 µg Au/mL (0.51–2.54 mM). These results demonstrate the potential of real-time imaging of differential contrast in dual-band OCT and motivate in vivo application of plasmon resonant AuNR in order to improve the detection sensitivity for structures that are difficult to identify by OCT such as small blood vessels.

Keywords

Differential contrast Spectral multiplexing Dual-band optical coherence tomography In vivo measurements Biotissue Small blood vessels 

Abbreviations

AuNR

Gold nanorods

OCT

Optical coherence tomography

Abs-max

Absorption-maximum

AR

Aspect ratio

NRL

Nanorods large

NRS

Nanorods small

NRT

Nanorods thin

dB

Decibel

Notes

Acknowledgments

This research was supported by the German center for interdisciplinary clinical research IZKF and by the “NRW Ziel 2 EFRE (ForSaTum)”. AB and US acknowledge sponsorship by Ziel2.NRW “Regionale Wettbewerbsfähigkeit und Beschäftigung” 2007–2013 co-financed by the European Regional Development Fund (ERDF), Grant no. 005-0908-0117. TW acknowledges financial support provided by the German Research Foundation within the Collaborative Research Center SFB Transregio 37 “Micro- and Nanosystems in Medicine—Reconstruction of Biological Functions”.

Conflict of interest

There is no conflict of interest to be stated.

Supplementary material

11051_2015_2949_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)

References

  1. Al Rawashdeh W, Kray S, Pich A, Pargen S, Balaceanu A, Lenz M, Spöler F, Kiessling F, Lederle W (2012) Polymeric nanoparticles as OCT contrast agents. J Nanoparticle Res. doi:10.1007/s11051-012-1255-0 Google Scholar
  2. Fujimoto JG (2003) Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol V21(N11):1361–1367CrossRefGoogle Scholar
  3. Gambichler T, Jaedicke V, Terras S (2011) Optical coherence tomography in dermatology: technical and clinical aspects. Arch Dermatol Res 303:457–473CrossRefGoogle Scholar
  4. Hermes B, Spöler F, Naami A, Bornemann J, Föst M, Grosse J, Jakse G, Knüchel R (2008) Visualization of the basement membrane zone of the bladder by optical coherence tomography: feasibility of non invasive evaluation of tumor invasion. Urology 72:677–681CrossRefGoogle Scholar
  5. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248CrossRefGoogle Scholar
  6. Jesser CA, Boppart SA, Pitris C, Stamper DL, Petue Nielsen G, Brenzinski ME, Fujimoto JG (1999) High resolution imaging of transitional cell carcinoma with optical coherence tomography: feasibility for the evaluation of bladder pathology. Bri J Radiol 72:1170–1176CrossRefGoogle Scholar
  7. Kray S, Spöler F, Kurz H (2009a) Improved contrast in clinical imaging. SPIE Newsroom. doi:10.1117/2.1200909.1809 Google Scholar
  8. Kray S, Spöler F, Först M, Kurz H (2009b) High-resolution simultaneous dual-band spectral domain optical coherence tomography. Opt Lett V34(N13):1970–1972CrossRefGoogle Scholar
  9. Li YL, Seekell K, Yuan H, Robles FE, Wax A (2012) Multispectral nanoparticle contrast agents for true-color spectroscopic optical coherence tomography. Biomed Opt Exp V3(N8):1914–1923CrossRefGoogle Scholar
  10. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962CrossRefGoogle Scholar
  11. Oldenburg A, Zweifel DA, Xu C, Wei A, Boppart S (2005) Characterization of Plasmon-resonance gold nanorods as near-infrared optical contrast agents investigated using a double-integrating sphere system. Plasmonic in biology and medicine III. Proc SPIE 5703:50–60CrossRefGoogle Scholar
  12. Oldenburg A, Hansen MN, Wie A, Boppart SA (2008) Plasmon-resonant gold nanorods provide spectroscopic OCT contrast in excised human breast tumors. Molecular probes for biomedical application II, Proceedings of SPIE. vol. 6867, 68670E1–68670E10Google Scholar
  13. Rasband WS, ImageJ, Bethesda, MD, USA: U.S. National Institutes of Health; 2009. Available: http://rsb.info.nih.gov/ij/
  14. Schmitt J (1999) Optical coherence tomography: a review. IEEE J Sel Top Quantum Electron V5, N4, 1205–1215Google Scholar
  15. Sirotkina MA, Shirmanova MV, Bugrova ML, Elagin VV, Agrba PA, Kirillin MY, Kamensky VA, Zagaynova EV (2010) Continuous optical coherence tomography monitoring of nanoparticles accumulation in biological tissue. J Nanopart Res V13(N1):283–291Google Scholar
  16. Spöler F, Kray S, Grychotl P, Hermes B, Bornemann J, Först M, Kurz H (2007) Ultrahigh resolution optical coherence tomography at two infrared wavelength regions using a single light source. Optical coherence tomography and coherence techniques III, Proceedings SPIE-OSA Biomedical Optics, SPIE vol 6627, 662704-1–662704-8Google Scholar
  17. Spöler F, Kray S, Grychtol P, Hermes B, Bornemann J, Först M, Kurz H (2007b) Simultaneous dual-band ultra-high resolution optical coherence tomography. Opt Exp V15(N17):10832–10841CrossRefGoogle Scholar
  18. Troutman TS, Barton JK, Romanowski M (2007) Optical coherence tomography with plasmon resonant nanorods of gold. Opt Lett V32(N11):1438–1440CrossRefGoogle Scholar
  19. Unterhuber A, Povazay B, Müller A, Jensen OB, Duelk M, Le T, Petersen PM, Velez C, Esmaeelpour M, Andersen PE, Drexler W (2013) Simultaneous dual wavelength eye-tracked ultrahigh resolution retinal and choroidal optical coherence tomography. Opt Let 38(21):4312–4315CrossRefGoogle Scholar
  20. Vakoc BJ, Fukumura D, Jain RK, Bouma B (2012) Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nat Rev Cancer 12:363–368CrossRefGoogle Scholar
  21. Vigderman L, Manna P, Zubarev ER (2012) Quantitative replacement of cetyl trimethylammonium bromide by cationic thiol ligands on the surface of gold nanorods and their extremely large uptake by cancer cells. Angew Chem Int Ed 51:636–641CrossRefGoogle Scholar
  22. Wei M, Qian J, Zhan Q, Cai F, Gharibi A, He S (2009) Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods. Front Optoelectron China 2(2):141–145CrossRefGoogle Scholar
  23. Welzel J (2001) Optical coherence tomography in dermatology: a review. Skin Res Technol 7:1–9CrossRefGoogle Scholar
  24. Yi DK, Sun I, Ryu JH, Koo H, Park CW, Youn I, Choi K, Kwon IC, Kim K, Ahn C (2010) Matrix metalloproteinase sensitive gold nanorod for simultaneous bioimaging and photothermal therapy of cancer. Bioconjugate Chem 21(12):2173–2177CrossRefGoogle Scholar
  25. Zagaynova EV, Shirmanova MV, Kirillin MY, Khlebstov BN, Orlova AG, Balalaeva IV, Sirotkina MA, Bugrova ML, Agrba PD, Kamensky VA (2008) Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Phys Med Biol 53:4995–5009CrossRefGoogle Scholar
  26. Zotter S, Pircher M, Torzicky T, Bonesi M, Götzinger E, Leitgen RA, Hitzenberger CK (2011) Visualization of microvasculature by dual-beam phase-resolved doppler optical coherence tomography. Opt Exp 19(2):1217–1227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Wa’el Al Rawashdeh
    • 1
  • Thomas Weyand
    • 2
    • 3
  • Stefan Kray
    • 4
  • Markus Lenz
    • 4
  • Anne Buchkremer
    • 5
  • Felix Spöler
    • 4
  • Ulrich Simon
    • 5
  • Martin Möller
    • 2
    • 3
  • Fabian Kiessling
    • 1
  • Wiltrud Lederle
    • 1
  1. 1.Experimental Molecular ImagingRWTH Aachen UniversityAachenGermany
  2. 2.DWI - Leibniz-Institute for Interactive Materials e.V. at RWTH Aachen UniversityAachenGermany
  3. 3.Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachenGermany
  4. 4.Institute of Semiconductor ElectronicsRWTH Aachen UniversityAachenGermany
  5. 5.Institut für Anorganische ChemieRWTH Aachen University52074Aachen

Personalised recommendations