The effect of charge on the release kinetics from polysaccharide–nanoclay composites

  • Stefano Del Buffa
  • Emanuele Grifoni
  • Francesca Ridi
  • Piero BaglioniEmail author
Research Paper
Part of the following topical collections:
  1. Engineered Bioinspired Nanomaterials


The objective of this study was to integrate inorganic halloysite nanotubes (HNT) with chitosan and hyaluronic acid to obtain hybrid nanocomposites with opposing charges and to investigate their potential in the controlled release of drug model probes. Two oppositely charged polysaccharides, chitosan and hyaluronic acid, were selected for their biocompatibility and their importance in biomedical applications. The high surface area and the hollow nanometric-sized lumen of HNT allowed for the efficient loading of rhodamine 110 and carboxyfluorescein, used as models for oppositely charged drugs. In the case of chitosan, the preparation of the nanocomposite was carried out exploiting the electrostatic interaction between the polymer and HNT in water, while with hyaluronic acid, a covalent functionalization strategy was employed to couple the polymer with the clay. Nanocomposites were characterized with thermal, microscopic, and spectroscopic techniques, and the release kinetics of the model compounds was assessed by fluorescence measurements. The release curves were fitted with a model able to account for the desorption process from the external and the internal halloysite surfaces. The results show that both polymeric coatings alter the release of the probes, indicating a key role of both charge and coating composition on the initial and final amount of released dye, as well as on the rate of the desorption process.


Release kinetics Nanocomposites Halloysite Chitosan Hyaluronic acid 



CSGI is acknowledged for financial support. Stefano Spezzani (Imerys Tiles Minerals Italia s.r.l.) is acknowledged for kindly providing HNT samples.

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethical standards

This research did not involve human participants or animals.

Supplementary material

11051_2015_2947_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1763 kb)


  1. Abdelmouleh M, Boufi S, ben Salah A et al (2002) Interaction of silane coupling agents with cellulose. Langmuir 18:3203–3208CrossRefGoogle Scholar
  2. Abdullayev E, Lvov Y (2013) Halloysite clay nanotubes as a ceramic “skeleton” for functional biopolymer composites with sustained drug release. J Mater Chem B 1:2894–2903. doi: 10.1039/C3TB20059K CrossRefGoogle Scholar
  3. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28. doi: 10.1016/j.jconrel.2004.08.010 CrossRefGoogle Scholar
  4. Aguzzi C, Viseras C, Cerezo P et al (2013) Release kinetics of 5-aminosalicylic acid from halloysite. Colloids Surf B 105:75–80. doi: 10.1016/j.colsurfb.2012.12.041 CrossRefGoogle Scholar
  5. Arcudi F, Cavallaro G, Lazzara G et al (2014) Selective functionalization of halloysite cavity by click reaction: structured filler for enhancing mechanical properties of bionanocomposite films. J Phys Chem C 118:15095–15101. doi: 10.1021/jp504388e CrossRefGoogle Scholar
  6. Bai H, Zhang H, He Y et al (2014) Enhanced proton conduction of chitosan membrane enabled by halloysite nanotubes bearing sulfonate polyelectrolyte brushes. J Membr Sci 454:220–232. doi: 10.1016/j.memsci.2013.12.005 CrossRefGoogle Scholar
  7. Baldrick P (2010) The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 56:290–299. doi: 10.1016/j.yrtph.2009.09.015 CrossRefGoogle Scholar
  8. Bariana M, Aw MS, Kurkuri M, Losic D (2013) Tuning drug loading and release properties of diatom silica microparticles by surface modifications. Int J Pharm 443:230–241. doi: 10.1016/j.ijpharm.2012.12.012 CrossRefGoogle Scholar
  9. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. doi: 10.1021/ja01145a126 CrossRefGoogle Scholar
  10. Berthold A, Cremer K, Kreuter J (1996) Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs. J Control Release 39:17–25. doi: 10.1016/0168-3659(95)00129-8 CrossRefGoogle Scholar
  11. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. doi: 10.1021/ja01269a023 CrossRefGoogle Scholar
  12. Buchtová N, Réthoré G, Boyer C et al (2013) Nanocomposite hydrogels for cartilage tissue engineering: mesoporous silica nanofibers interlinked with siloxane derived polysaccharide. J Mater Sci 24:1875–1884. doi: 10.1007/s10856-013-4951-0 Google Scholar
  13. Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:H41–H56. doi: 10.1002/adma.201003963 CrossRefGoogle Scholar
  14. Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13:3299–3305. doi: 10.1021/cm0101632 CrossRefGoogle Scholar
  15. Chao C, Liu J, Wang J et al (2013) Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl Mater Interfaces 5:10559–10564. doi: 10.1021/am4022973 CrossRefGoogle Scholar
  16. Chen M, Liu X, Fahr A (2011) Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: in vitro study with finite and infinite dosage application. Int J Pharm 408:223–234. doi: 10.1016/j.ijpharm.2011.02.006 CrossRefGoogle Scholar
  17. Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym 92:1262–1279. doi: 10.1016/j.carbpol.2012.10.028 CrossRefGoogle Scholar
  18. Connell LS, Romer F, Suárez M et al (2014) Chemical characterisation and fabrication of chitosan–silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane. J Mater Chem B 2:668. doi: 10.1039/c3tb21507e CrossRefGoogle Scholar
  19. Deen I, Zhitomirsky I (2014) Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films. J Alloys Compd 586(1):S531–S534. doi: 10.1016/j.jallcom.2013.01.088 CrossRefGoogle Scholar
  20. Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582Google Scholar
  21. Duarte HA, Lourenco MP, Heine T, Guimares L (2012) Clay mineral nanotubes: stability, structure and properties. INTECH Open Access Publisher, RijekaGoogle Scholar
  22. Dulbecco R, Vogt M (1954) Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med 99:167–182CrossRefGoogle Scholar
  23. Falcone SJ, Berg RA (2008) Crosslinked hyaluronic acid dermal fillers: a comparison of rheological properties. J Biomed Mater Res A 87:264–271. doi: 10.1002/jbm.a.31675 CrossRefGoogle Scholar
  24. Forster S, Thumser AE, Hood SR, Plant N (2012) Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS ONE 7:e33253. doi: 10.1371/journal.pone.0033253 CrossRefGoogle Scholar
  25. Fox JD, Capadona JR, Marasco PD, Rowan SJ (2013) Bioinspired water-enhanced mechanical gradient nanocomposite films that mimic the architecture and properties of the squid beak. J Am Chem Soc 135:5167–5174. doi: 10.1021/ja4002713 CrossRefGoogle Scholar
  26. Ghebaur A, Garea SA, Iovu H (2012) New polymer–halloysite hybrid materials—potential controlled drug release system. Int J Pharm 436:568–573. doi: 10.1016/j.ijpharm.2012.07.014 CrossRefGoogle Scholar
  27. Ghorai S, Sarkar A, Panda AB, Pal S (2013) Evaluation of the flocculation characteristics of polyacrylamide grafted xanthan gum/silica hybrid nanocomposite. Ind Eng Chem Res 52:9731–9740. doi: 10.1021/ie400550m CrossRefGoogle Scholar
  28. Gu BK, Park SJ, Kim MS et al (2013) Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohydr Polym 97:65–73. doi: 10.1016/j.carbpol.2013.04.060 CrossRefGoogle Scholar
  29. Ha DI, Lee SB, Chong MS et al (2006) Preparation of thermo-responsive and injectable hydrogels based on hyaluronic acid and poly(N-isopropylacrylamide) and their drug release behaviors. Macromol Res 14:87–93. doi: 10.1007/BF03219073 CrossRefGoogle Scholar
  30. Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9:1974–1980. doi: 10.1021/bm8001717 CrossRefGoogle Scholar
  31. Haxaire K, Marechal Y, Milas M, Rinaudo M (2003) Hydration of polysaccharide hyaluronan observed by IR spectrometry. I. Preliminary experiments and band assignments. Biopolymers 72:10–20. doi: 10.1002/bip.10245 CrossRefGoogle Scholar
  32. Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89:151–165. doi: 10.1016/S0168-3659(03)00126-3 CrossRefGoogle Scholar
  33. Horcajada P, Chalati T, Serre C et al (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178. doi: 10.1038/nmat2608 CrossRefGoogle Scholar
  34. Issa MM, Köping-Höggård M, Artursson P (2005) Chitosan and the mucosal delivery of biotechnology drugs. Drug Discov Today 2:1–6. doi: 10.1016/j.ddtec.2005.05.008 CrossRefGoogle Scholar
  35. Jayakumar R, Menon D, Manzoor K et al (2010a) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82:227–232. doi: 10.1016/j.carbpol.2010.04.074 CrossRefGoogle Scholar
  36. Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010b) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150. doi: 10.1016/j.biotechadv.2009.11.001 CrossRefGoogle Scholar
  37. Joussein E, Petit S, Churchman J et al (2005) Halloysite clay minerals—a review. Clay Miner 40:383–426. doi: 10.1180/0009855054040180 CrossRefGoogle Scholar
  38. Kaur S, Dhillon GS (2014) The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit Rev Microbiol 40:155–175. doi: 10.3109/1040841X.2013.770385 CrossRefGoogle Scholar
  39. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11. doi: 10.1016/j.addr.2009.09.004 CrossRefGoogle Scholar
  40. Khoo WS, Ismail H, Ariffin A (2012) Tensile, swelling, and oxidative degradation properties of crosslinked polyvinyl alcohol/chitosan/halloysite nanotube composites. Int J Polym Mater 62:390–396. doi: 10.1080/00914037.2012.719133 CrossRefGoogle Scholar
  41. Kulterer MR, Reichel VE, Kargl R et al (2012) Functional polysaccharide composite nanoparticles from cellulose acetate and potential applications. Adv Funct Mater 22:1749–1758. doi: 10.1002/adfm.201102350 CrossRefGoogle Scholar
  42. Lee H, Lee K, Park TG (2008) Hyaluronic acid–paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity. Bioconjug Chem 19:1319–1325. doi: 10.1021/bc8000485 CrossRefGoogle Scholar
  43. Levis SR, Deasy PB (2002) Characterisation of halloysite for use as a microtubular drug delivery system. Int J Pharm 243:125–134CrossRefGoogle Scholar
  44. Levis SR, Deasy PB (2003) Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propranolol hydrochloride. Int J Pharm 253:145–157CrossRefGoogle Scholar
  45. Liu Tsang V, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56:1635–1647. doi: 10.1016/j.addr.2004.05.001 CrossRefGoogle Scholar
  46. Liu M, Zhang Y, Wu C et al (2012) Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. Int J Biol Macromol 51:566–575. doi: 10.1016/j.ijbiomac.2012.06.022 CrossRefGoogle Scholar
  47. Liu M, Wu C, Jiao Y et al (2013) Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B 1:2078–2089. doi: 10.1039/C3TB20084A CrossRefGoogle Scholar
  48. Liu M, Shen Y, Ao P et al (2014) The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes. RSC Adv 4:23540–23553. doi: 10.1039/C4RA02189D CrossRefGoogle Scholar
  49. Lvov YM, Shchukin DG, Möhwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2:814–820CrossRefGoogle Scholar
  50. Marney DCO, Yang W, Russell LJ et al (2012) Phosphorus intercalation of halloysite nanotubes for enhanced fire properties of polyamide 6. Polym Adv Technol 23:1564–1571. doi: 10.1002/pat.3030 CrossRefGoogle Scholar
  51. Massaro M, Riela S, Cavallaro G et al (2014) Eco-friendly functionalization of natural halloysite clay nanotube with ionic liquids by microwave irradiation for Suzuki coupling reaction. J Organomet Chem 749:410–415. doi: 10.1016/j.jorganchem.2013.10.044 CrossRefGoogle Scholar
  52. Mi F-L, Tan Y-C, Liang H-F, Sung H-W (2002) In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23:181–191. doi: 10.1016/S0142-9612(01)00094-1 CrossRefGoogle Scholar
  53. Murugan R, Ramakrishna S (2004) Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 25:3829–3835. doi: 10.1016/j.biomaterials.2003.10.016 CrossRefGoogle Scholar
  54. Ortona O, D’Errico G, Mangiapia G, Ciccarelli D (2008) The aggregative behavior of hydrophobically modified chitosans with high substitution degree in aqueous solution. Carbohydr Polym 74:16–22. doi: 10.1016/j.carbpol.2008.01.009 CrossRefGoogle Scholar
  55. Pandey S, Goswami GK, Nanda KK (2013) Green synthesis of polysaccharide/gold nanoparticle nanocomposite: an efficient ammonia sensor. Carbohydr Polym 94:229–234. doi: 10.1016/j.carbpol.2013.01.009 CrossRefGoogle Scholar
  56. Price R, Gaber BP, Lvov Y (2001) In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral. J Microencapsul 18:713–722. doi: 10.1080/02652040010019532 CrossRefGoogle Scholar
  57. Ritger PL, Peppas NA (1987a) A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–36. doi: 10.1016/0168-3659(87)90034-4 CrossRefGoogle Scholar
  58. Ritger PL, Peppas NA (1987b) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42. doi: 10.1016/0168-3659(87)90035-6 CrossRefGoogle Scholar
  59. Roig-Roig F, Solans C, Esquena J, García-Celma MJ (2013) Preparation, characterization, and release properties of hydrogels based on hyaluronan for pharmaceutical and biomedical use. J Appl Polym Sci 130:1377–1382. doi: 10.1002/app.39306 CrossRefGoogle Scholar
  60. Roldo M, Fatouros DG (2011) Chitosan-derivative based hydrogels as drug delivery platforms: applications in drug delivery and tissue engineering. In: Zilberman M (ed) Act. Implants scaffolds tissue regen. Springer, Berlin, pp 351–376CrossRefGoogle Scholar
  61. Ruiz-Hitzky E, Van Meerbeek A (2006) Chapter 10.3 clay mineral- and organoclay-polymer nanocomposite. In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in clay science. Elsevier, Amsterdam, pp 583–621Google Scholar
  62. Ruiz-Hitzky E, Darder M, Fernandes FM et al (2013) Fibrous clays based bionanocomposites. Prog Polym Sci 38:1392–1414. doi: 10.1016/j.progpolymsci.2013.05.004 CrossRefGoogle Scholar
  63. Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670. doi: 10.1016/j.biomaterials.2005.12.002 CrossRefGoogle Scholar
  64. Shchukin DG, Möhwald H (2011) Smart nanocontainers as depot media for feedback active coatings. Chem Commun 47:8730. doi: 10.1039/c1cc13142g CrossRefGoogle Scholar
  65. Shchukin DG, Sukhorukov GB, Price RR, Lvov YM (2005) Halloysite nanotubes as biomimetic nanoreactors. Small 1:510–513CrossRefGoogle Scholar
  66. Shingel KI, Marchessault RH (2006) Iron-polysaccharide composites for pharmaceutical applications. Polysacch Drug Deliv Pharm Appl 934:271–287CrossRefGoogle Scholar
  67. Stodolak E, Paluszkiewicz C, Bogun M, Blazewicz M (2009) Nanocomposite fibres for medical applications. J Mol Struct 924–926:208–213. doi: 10.1016/j.molstruc.2009.01.018 CrossRefGoogle Scholar
  68. Sudina ML, Braga CRC, Marcus VL et al (2012) Application of infrared spectroscopy to analysis of chitosan/clay nanocomposites. InTech, Rijeka, pp 43–62Google Scholar
  69. Suh DJ, Lim YT, Park OO (2000) The property and formation mechanism of unsaturated polyester–layered silicate nanocomposite depending on the fabrication methods. Polymer 41:8557–8563. doi: 10.1016/S0032-3861(00)00216-0 CrossRefGoogle Scholar
  70. Travan A, Marsich E, Donati I et al (2011) Silver–polysaccharide nanocomposite antimicrobial coatings for methacrylic thermosets. Acta Biomater 7:337–346. doi: 10.1016/j.actbio.2010.07.024 CrossRefGoogle Scholar
  71. Vallés-Lluch A, Poveda-Reyes S, Amorós P et al (2013) Hyaluronic acid-silica nanohybrid gels. Biomacromolecules 14:4217–4225. doi: 10.1021/bm401041z CrossRefGoogle Scholar
  72. Veerabadran NG, Price RR, Lvov YM (2007) Clay nanotubes for encapsulation and sustained release of drugs. NANO 2:115–120CrossRefGoogle Scholar
  73. Vergaro V, Abdullayev E, Lvov YM et al (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules 11:820–826CrossRefGoogle Scholar
  74. Verma NK, Moore E, Blau W et al (2012) Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis. J Nanoparticle Res 14:1–11. doi: 10.1007/s11051-012-1137-5 CrossRefGoogle Scholar
  75. Wang Q, Zhang J, Zheng Y, Wang A (2014) Adsorption and release of ofloxacin from acid- and heat-treated halloysite. Colloids Surf B 113:51–58. doi: 10.1016/j.colsurfb.2013.08.036 CrossRefGoogle Scholar
  76. Ward CJ, Song S, Davis EW (2010) Controlled release of tetracycline-hcl from halloysite-polymer composite films. J Nanosci Nanotechnol 10:6641–6649. doi: 10.1166/jnn.2010.2647 CrossRefGoogle Scholar
  77. Yuan P, Southon PD, Liu Z et al (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112:15742–15751. doi: 10.1021/jp805657t CrossRefGoogle Scholar
  78. Zhao Y, Wang S, Guo Q et al (2013) Hemocompatibility of electrospun halloysite nanotube- and carbon nanotube-doped composite poly(lactic-co-glycolic acid) nanofibers. J Appl Polym Sci 127:4825–4832. doi: 10.1002/app.38054 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Stefano Del Buffa
    • 1
  • Emanuele Grifoni
    • 1
  • Francesca Ridi
    • 1
  • Piero Baglioni
    • 1
    Email author
  1. 1.Department of Chemistry “Ugo Schiff” and CSGIUniversity of FlorenceFlorenceItaly

Personalised recommendations