Biodistribution, cellular localization, and in vivo tolerability of 35S-labeled antiinflammatory dendritic polyglycerol sulfate amine

  • Cornelia Holzhausen
  • Dominic Gröger
  • Lars Mundhenk
  • Cornelius K. Donat
  • Jörg Schnorr
  • Rainer Haag
  • Achim D. GruberEmail author
Research Paper


Antiinflammatory dendritic polyglycerol sulfate (dPGS) holds great potential in the treatment and imaging of inflammatory processes. Here, we studied its biokinetic behavior, biodistribution, target cells, and in vivo toxicology. Following intravenous or subcutaneous application of 35sulfur-labeled dPGS amine with a molecular weight of 10.05 kDa and a hydrodynamic diameter of 5.7 ± 1.5 nm to mice, tissues were collected at specific time points (2, 15 min; 1, 24 h; 5, 21 days) and analyzed by liquid scintillation counting, autoradiography, radioluminography, and light microscopic autoradiography. The blood half-life of dPGS amine was 12 days. The major route of elimination was via the bile and feces. Elimination via the kidney and urine was only initially observed after i.v., but not after s.c. injection. Regardless of the administration mode, liver and spleen were late target organs where dPGS amine accumulated in phagocytic cells. Despite bioaccumulation, toxicological histopathology failed to identify any adverse effects at any time and in any tissues examined suggesting a high in vivo biocompatibility and encouraging future investigation for biomedical applications.


Nanoparticle Radiolabeling Liquid scintillation counting Radioluminography Nanotoxicology Health effects 



Maximum concentration


Dendritic polyglycerol sulfate


Hematoxylin and eosin


Injected dose




Light microscopic autoradiography


Liquid scintillation counting


Mononuclear phagocyte system




Post administration


Photostimulable phosphor plate




Standard deviation


Single-organ autoradiography



We thank Adelheid Hagenbach and Ulrich Abram for support by the Liquid Scintillation Counting technique and construction of radioactive dPG35S amine as well as Nancy A. Erickson for helpful discussions.

This work was supported by the Helmholtz Virtual Institute on “Multifunctional Polymers in Medicine” and the FU Focus Area “Nanoscale”, the collaborative research centers SFB 765 and SFB 1112 (A02, C03) of the German Science Foundation (DFG) and the DFG Priority Program 1313 Biological Responses to Nanoscale Particles.

Conflicts of interest



  1. Atkins GL (1974) Multicompartment models for biological systems. Methuen, Chapman and HallGoogle Scholar
  2. Bancroft JD, Gamble M (2007) Theory and practice of histological techniques, 6th edn. Churchill Livingstone Elsevier, LondonGoogle Scholar
  3. Biffi S et al (2013) Dendritic polyglycerolsulfate near infrared fluorescent (NIRF) dye conjugate for non-invasively monitoring of inflammation in an allergic asthma mouse model. PLoS One 8:e57150. doi: 10.1371/journal.pone.0057150 CrossRefGoogle Scholar
  4. Calderón M, Quadir MA, Sharma SK, Haag R (2010) Dendritic Polyglycerols for Biomedical Applications. Adv Mater 22:190–218. doi: 10.1002/adma.200902144 CrossRefGoogle Scholar
  5. Cho M et al (2009) The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol Lett 189:177–183. doi: 10.1016/j.toxlet.2009.04.017 CrossRefGoogle Scholar
  6. Dernedde J et al (2010) Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation. Proc Natl Acad Sci USA 107:19679–19684. doi: 10.1073/pnas.1003103107 CrossRefGoogle Scholar
  7. Fox ME, Szoka FC, Fréchet JMJ (2009) Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc Chem Res 42:1141–1151. doi: 10.1021/ar900035f CrossRefGoogle Scholar
  8. Gröger D et al (2013) Synthesis and biological evaluation of radio and dye labeled amino functionalized dendritic polyglycerol sulfates as multivalent anti-inflammatory compounds. Bioconjug Chem 24:1507–1514. doi: 10.1021/bc400047f CrossRefGoogle Scholar
  9. Holzhausen C, Gröger D, Mundhenk L, Welker P, Haag R, Gruber AD (2013) Tissue and cellular localization of nanoparticles using 35S labeling and light microscopic autoradiography. Nanomedicine 9:465–468CrossRefGoogle Scholar
  10. Jani P, Nomura T, Yamashita F, Takakura Y, Hashida M, Florence A (1996) Biliary excretion of polystyrene microspheres with covalently linked FITC fluorescence after oral and parenteral administration to male Wistar rats. J Drug Target 4:87–93. doi: 10.3109/10611869609046266 CrossRefGoogle Scholar
  11. Jock Thomson PBC (2001) Use and preparation of quench curves in liquid scintillation counting. Accessed 18 Jun 2013
  12. Kainthan RK, Brooks DE (2007) In vivo biological evaluation of high molecular weight hyperbranched polyglycerols. Biomaterials 28:4779–4787. doi: 10.1016/j.biomaterials.2007.07.046 CrossRefGoogle Scholar
  13. Khandare J, Mohr A, Calderón M, Welker P, Licha K, Haag R (2010) Structure-biocompatibility relationship of dendritic polyglycerol derivatives. Biomaterials 31:4268–4277. doi: 10.1016/j.biomaterials.2010.02.001 CrossRefGoogle Scholar
  14. Kolbe H, Dietzel G (2000) Technical validation of radioluminography systems. Regul Toxicol Pharmacol 31:S5–S14. doi: 10.1006/rtph.2000.1380 CrossRefGoogle Scholar
  15. Levy G, Gibaldi M, Jusko WJ (1969) Multicompartment pharmacokinetic models and pharmacologic effects. J Pharm Sci 58:422–424. doi: 10.1002/jps.2600580406 CrossRefGoogle Scholar
  16. Li S-D, Huang L (2008) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5:496–504. doi: 10.1021/mp800049w CrossRefGoogle Scholar
  17. Licha K et al (2011) Fluorescence imaging with multifunctional polyglycerol sulfates: novel polymeric near-IR probes targeting inflammation. Bioconjug Chem 22:2453–2460. doi: 10.1021/bc2002727 CrossRefGoogle Scholar
  18. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3:703–717. doi: 10.2217/17435889.3.5.703 CrossRefGoogle Scholar
  19. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270. doi: 10.1073/pnas.0805135105 CrossRefGoogle Scholar
  20. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3:40–47. doi: 10.1016/s1748-0132(08)70014-8 CrossRefGoogle Scholar
  21. Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134:425–439CrossRefGoogle Scholar
  22. Müller RH, Wallis KH (1993) Surface modification of i.v. injectable biodegradable nanoparticles with poloxamer polymers and poloxamine 908. Int J Pharm 89:25–31. doi: 10.1016/0378-5173(93)90304-x CrossRefGoogle Scholar
  23. Müller RH, Rühl D, Lück M, Paulke BR (1997) Influence of fluorescent labelling of polystyrene particles on phagocytic uptake surface hydrophobicity, and plasma protein adsorption. Pharm Res 14:18–24. doi: 10.1023/a:1012043131081 CrossRefGoogle Scholar
  24. Nel AE et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557CrossRefGoogle Scholar
  25. Owens Iii DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102. doi: 10.1016/j.ijpharm.2005.10.010 CrossRefGoogle Scholar
  26. Quadir MA, Haag R (2012) Biofunctional nanosystems based on dendritic polymers. J Control Release 161:484–495. doi: 10.1016/j.jconrel.2011.12.040 CrossRefGoogle Scholar
  27. Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, Danscher G (2007) Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol 4:10CrossRefGoogle Scholar
  28. Sadauskas E, Danscher G, Stoltenberg M, Vogel U, Larsen A, Wallin H (2009) Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine 5:162–169CrossRefGoogle Scholar
  29. Toutain PL, Bousquet-MÉLou A (2004) Plasma terminal half-life. J Vet Pharmacol Ther 27:427–439. doi: 10.1111/j.1365-2885.2004.00600.x CrossRefGoogle Scholar
  30. Van Aubel RAMH, Masereeuw R, Russel FGM (2000) Molecular pharmacology of renal organic anion transporters. Am J Physiol Renal Physiol 279:F216–F232Google Scholar
  31. Weinhart M, Gröger D, Enders S, Dernedde J, Haag R (2011a) Synthesis of dendritic polyglycerol anions and their efficiency toward L-selectin inhibition. Biomacromolecules 12:2502–2511. doi: 10.1021/bm200250f CrossRefGoogle Scholar
  32. Weinhart M et al (2011b) The role of dimension in multivalent binding events: structure-activity relationship of dendritic polyglycerol sulfate binding to L-selectin in correlation with size and surface charge density. Macromol Biosci 11:1088–1098. doi: 10.1002/mabi.201100051 CrossRefGoogle Scholar
  33. Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 83:601–606. doi: 10.1002/jps.2600830432 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Cornelia Holzhausen
    • 1
  • Dominic Gröger
    • 2
  • Lars Mundhenk
    • 1
  • Cornelius K. Donat
    • 3
  • Jörg Schnorr
    • 4
  • Rainer Haag
    • 2
  • Achim D. Gruber
    • 1
    Email author
  1. 1.Institute of Veterinary PathologyFreie Universität BerlinBerlinGermany
  2. 2.Institute of Chemistry and BiochemistryFreie Universität BerlinBerlinGermany
  3. 3.Department of NeuroradiopharmaceuticalsHelmholtz-Zentrum Dresden-RossendorfLeipzigGermany
  4. 4.Institute of RadiologyCharité-Universitätsmedizin BerlinBerlinGermany

Personalised recommendations