Influence of the aggregation, concentration, and viscosity on the nanomagnetism of iron oxide nanoparticle colloids for magnetic hyperthermia

  • David Cabrera
  • Julio Camarero
  • Daniel Ortega
  • Francisco J. TeranEmail author
Research Paper
Part of the following topical collections:
  1. Engineered Bioinspired Nanomaterials


Iron oxide nanoparticles have become ubiquitous in many biomedical applications, acting as core elements in an increasing number of therapeutic and diagnostic modalities. These applications mainly rely on their static and dynamic magnetic properties, through which they can be remotely actuated. However, little attention has been paid to understand the variation of the magnetic response of nanoparticles inside cells or tissues, despite of the remarkable changes reported to date. In this article, we provide some hints to analyze the influence of the biological matrix on the magnetism of iron oxide nanoparticles. To this aim, we propose the assessment of the heating efficiency of magnetic colloids against nanoparticle aggregation, concentration, and viscosity in order to mimic the fate of nanoparticles upon cell internalization.


Nanomagnetism Magnetic iron oxide nanoparticles Magnetic hyperthermia Dipolar interactions Aggregation Viscosiy Cell internalization Bioinspired nanomaterials 



This work has been partially supported by European Commission (MULTIFUN, No. 262943), Spanish Ministry of Economy and Competitiveness (MAT2013-47395-C4-3-R), and Madrid Regional Government (NANOFRONTMAG-CM S2013/MIT-2850). F. J. T acknowledges financial support from Ramon y Cajal subprogram (RYC-2011-09617). We thank Dr. Gorka Salas for providing iron oxide nanoparticles, and Leonor de la Cueva and Rebeca Amaro for their technical assistance.


  1. Amiri H, Bordonali L, Lascialfari A, Wan S, Monopoli MP, Lynch I, Laurent S, Mahmoudi M (2013) Protein corona affects the relaxativity and MRI contrast efficiency of magnetic nanoparticles. Nanoscale 5:8656–8666CrossRefGoogle Scholar
  2. Blanco-Andujar C, Ortega D, Southern P et al (2014) High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions. Nanoscale. doi: 10.1039/c4nr06239f Google Scholar
  3. Calero M, Gutiérrrez L, Salas G, Luengo Y, Lázaro A, Acedo P, Morales MP, Miranda R, Villanueva A (2014) Efficient and safe internalization of magnetic iron oxide nanoparticles: two fundamental requirements for biomedical applications. Nanomedicine 10:733–743CrossRefGoogle Scholar
  4. Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921CrossRefGoogle Scholar
  5. Coffey WT, Kalmykov YP (2012) Thermal fluctuations of magnetic nanoparticles: fifty years after Brown. J Appl Phys 112:121301CrossRefGoogle Scholar
  6. Costo R, Bello V, Robic C, Port M, Marco JF, Morales MP, Veintemillas-Verdaguer S (2012) Ultrasmall iron oxide nanoparticles for biomedical applications: improving the colloidal and magnetic properties. Langmuir 28:178–185Google Scholar
  7. de la Presa P, Luengo Y, Multigner M, Costo R, Morales M, Rivero G, Hernando A (2012) Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J Phys Chem C 116:25602–25610CrossRefGoogle Scholar
  8. Di Corato R, Espinosa A, Lartigue L, Tharaud M, Chat S, Pellegrino T, Ménager C, Gazeau F, Wilhelm C (2014) Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials 35:6400–6411CrossRefGoogle Scholar
  9. Etheridge ML, Hurley KR, Zhang J, Jeon S, Ring HL, Hogan C, Haynes CL, Garwood M, Bischof JC (2014) Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. Technology 2:214–228CrossRefGoogle Scholar
  10. Fortin JP, Wilhelm C, Servais J, Ménager C, Bacri JC, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635CrossRefGoogle Scholar
  11. Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6:3080–3091CrossRefGoogle Scholar
  12. Hilger I, Kaiser WA (2012) Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine 7:1443–1459CrossRefGoogle Scholar
  13. Javed Y, Lartigue L, Hugounenq P, Vuong QL, Gossuin Y, Bazzi R, Wilhelm C, Ricolleau C, Gazeau F, Alloyeau D (2014) Biodegradation mechanisms of iron oxide monocrystalline nanoflowers and tunable shield effect of gold coating. Small 10:3325–3337CrossRefGoogle Scholar
  14. Kolosnjaj-Tabi J, Di Corato R, Lartigue L, Marangon I, Guardia P, Silva AA, Luciani N, Clément O, Flaud P, Singh JV, Decuzzi P, Pellegrino T, Wilhelm C, Gazeau F (2014) Heat-generating iron oxide nanocubes: subtle "destructurators" of the tumoral microenvironment. ACS Nano 8:4268–4283Google Scholar
  15. Kossatz S, Ludwig R, Dähring H, Ettelt V, Rimkus G, Marciello M, Salas G, Patel V, Teran FJ, Hilger I (2014) High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature increases in the tumor area. Pharm Res. doi: 10.1007/s11095-014-1417-0 Google Scholar
  16. Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558CrossRefGoogle Scholar
  17. Landi GT (2014) Role of dipolar interaction in magnetic hyperthermia. Phys Rev B 89:014403CrossRefGoogle Scholar
  18. Levy M, Wilhelm C, Luciani N, Deveaux V, Gendron F, Luciani A, Devaud M, Gazeau F (2011) Nanomagnetism reveals the intracellular clustering of iron oxide nanoparticles in the organism. Nanoscale 3:4402CrossRefGoogle Scholar
  19. Lévy M, Gazeau F, Bacri JC, Wilhelm C, Devaud M (2011) Modeling magnetic nanoparticle dipole–dipole interactions inside living cells. Phys Rev B 84:075480CrossRefGoogle Scholar
  20. Lévy M, Wilhelm C, Devaud M, Levitz P, Gazeau F (2012) How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity. Contrast Media Mol Imaging 7:373CrossRefGoogle Scholar
  21. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324CrossRefGoogle Scholar
  22. Mamiya H (2013) Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia. J Nanomater 2013:752973CrossRefGoogle Scholar
  23. Martinez-Boubeta C, Simeonidis K, Serantes D, Conde-Leborán I, Kazakis I, Stefanou G, Peña L, Galceran R, Balcells L, Monty C, Baldomir D, Mitrakas M, Angelakeris M (2012) Adjustable hyperthermia response of self-assembled ferromagnetic Fe–MgO core-shell nanoparticles by tuning dipole-dipole interactions. Adv Funct Mater 22:3737–3744CrossRefGoogle Scholar
  24. Roca AG, Costo R, Rebolledo AF, Veintemillas-Verdaguer S, Tartaj P, González-Carreño T, Morales MP, Serna CJ (2009) Progress in the preparation of magnetic nanoparticles for applicationsi n biomedicine. J Phys D Appl Phys 42:224002CrossRefGoogle Scholar
  25. Salas G, Casado C, Teran FJ, Miranda R, Serna CJ, Morales MP (2012) Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. J Mater Chem 22:21065–21075CrossRefGoogle Scholar
  26. Salas G, Veintemillas-Verdaguer S, Morales MP (2013) Relationship between physico-chemical properties of magnetic fluids and their heating capacity. Int J Hyperth 29:768–777CrossRefGoogle Scholar
  27. Salas G, Camarero J, Cabrera D, Takacs H, Varela M, Ludwig R, Dähring H, Hilger I, Miranda R, Morales MP, Teran FJ (2014) Modulation of magnetic heating via dipolar magnetic interactions in monodisperse and crystalline iron oxide nanoparticles. J Phys Chem C 118:19985–19994CrossRefGoogle Scholar
  28. Serantes D, Simeonidis K, Angelakeris M, Chubykalo-Fesenko O, Marciello M, Del Puero MP, Baldomir D, Martinez-Boubeta C (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934CrossRefGoogle Scholar
  29. Soukup D, Moise S, Céspedes E, Dobson J, Telling ND (2015) In situ measurement of magnetization relaxation of internalized nanoparticles in live cells. ACS Nano 9:231–240CrossRefGoogle Scholar
  30. Teran FJ, Casado C, Mikuszeit N, Salas G, Bollero A, Morales MP, Camarero J, Miranda R (2012) Accurate determination of the specific absorption rate in superparamagnetic nanoparticles under non-adiabatic conditions. Appl Phys Lett 101:062413CrossRefGoogle Scholar
  31. Vergés MA, Costo R, Roca AG, Marco JF, Goya GF, Serna CJ, Morales MP (2008) Uniform and water stable magnetite nanoparticles with diameters around the monodomain–multidomain limit. J Phys D 41:134003CrossRefGoogle Scholar
  32. Wilkinson K, Ekstrand-Hammarström B, Ahlinder L, Guldevall K, Pazik R, Kępiński L, Kvashnina KO, Butorin SM, Brismar H, Önfelt B et al (2012) Visualization of custom-tailored iron oxide nanoparticles chemistry, uptake, and toxicity. Nanoscale 4:7383–7393CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • David Cabrera
    • 1
  • Julio Camarero
    • 1
    • 2
  • Daniel Ortega
    • 1
    • 3
    • 4
  • Francisco J. Teran
    • 1
    • 4
    Email author
  1. 1.IMDEA NanocienciaCiudad Universitaria de CantoblancoMadridSpain
  2. 2.Dpto. Física Materia Condensada and Instituto “Nicolás Cabrera”Universidad Autónoma de MadridMadridSpain
  3. 3.Institute of Biomedical EngineeringUniversity College LondonLondonUK
  4. 4.Unidad Asociada de Nanobiotecnología, CNB-CSIC&IMDEA NanocienciaCiudad Universitaria de CantoblancoMadridSpain

Personalised recommendations