Advertisement

Kinematics of gold nanoparticles manipulation in situ transmission electron microscopy

  • Diego Alducin
  • Gilberto Casillas
  • Fernando Mendoza-Santoyo
  • Arturo Ponce
  • Miguel José-YacamánEmail author
Research Paper

Abstract

Nanostructured materials such as nanoparticles, nanotubes, and nanowires are subject to different forces regimes compared with their macroscopic counterparts. In this work, we report the experimental manipulation of an individual gold nanoparticle (96 nm) capped with PVP considering forces surrounding the nanoparticle such as adhesion, friction, and the external load in real time, and how the differences between these forces produce distinct motions. Combining a scanning probe tool within a transmission electron microscope, we manipulated a gold nanoparticle and recorded the sliding and rolling kinematic motions. Our observations show quantitatively the adhesion force, maximum rolling resistance, and friction coefficients of the probe and the surface of the capped particle as well as particle and substrate surface.

Keywords

Adhesion force Friction force Metallic nanoparticles In situ transmission electron microscopy 

Notes

Acknowledgments

This project was supported by grants from the National Center for Research Resources (5 G12RR013646-12) and the National Institute on Minority Health and Health Disparities (G12MD007591) from the National Institutes of Health. We also thank support from NSF grants DMR-1103730 and NSF PREM Grant # DMR 0934218. Finally, the authors would like to acknowledge the Department of Defense #64756-RT-REP and the Welch Foundation grant award # AX-1615.

Supplementary material

Supplementary material 1 (MPG 15312 kb)

11051_2015_2898_MOESM2_ESM.avi (296.5 mb)
Supplementary material 2 (AVI 303663 kb)
11051_2015_2898_MOESM3_ESM.mp4 (117.7 mb)
Supplementary material 3 (MP4 120539 kb)

References

  1. Bianconi G (2013) Superconductor-Insulator transition in a network of 2D percolation. Euro Phy Lett 101:26003. doi: 10.1209/0295-5075/101/26003 CrossRefGoogle Scholar
  2. Bradley RS (1932) The cohesive force between solid surfaces and the surface energy of solids. Phil Mag 13:853–862. doi: 10.1080/14786449209461990 CrossRefGoogle Scholar
  3. Casillas G, Palomares-Baez JP, Rodriguez-Lopez JL, Luo J, Ponce A, Esparza R, Velazquez-Salazar JJ, Hurtado-Macias A, Gonzalez-Hernandez J, Jose-Yacaman M (2012) In situ TEM study of mechanical behaviour of twinned nanoparticles. Phil Mag 92:4437–4453. doi: 10.1080/14786435.2012.709951 CrossRefGoogle Scholar
  4. Custance O, Morita S, Perez R (2009) Atomic Force microscopy as a tool for atom manipulation. Nat Nanotech 4:803–810. doi: 10.1038/nnano.2009.347 CrossRefGoogle Scholar
  5. Darwich S, Mougin K, Rao A, Gnecco E, Shrisudersan J, Haidara H (2011) Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle-substrate chemistry and morphology, and of operating conditions. Beilstein J Nanotechnol 2:85–98. doi: 10.3762/bjnano.2.10 CrossRefGoogle Scholar
  6. Denizel C, Ozcan O, Sitti M (2011) Automated 2-D nanoparticle manipulation using atomic force microscopy. IEEE Trans Nanotechnol 10:472–481. doi: 10.1109/TNANO.2010.2047510 CrossRefGoogle Scholar
  7. Derjaguin B, Muller V, Toporov Y (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53:314–326. doi: 10.1016/0021-9797(75)90018-1 CrossRefGoogle Scholar
  8. Friedel J (1993) Superconductivity in crystal clusters. Il Nouvo Cimento 15:239. doi: 10.1007/BF02456906 CrossRefGoogle Scholar
  9. He H, Friese E, Heckenberg N, Rubinsztein-Dunlop H (1995) Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett 75:826. doi: 10.1887/0750309016/b1142c31 CrossRefGoogle Scholar
  10. Johnson KL (1985) Contact Mechanics. Cambridge University, LondonCrossRefGoogle Scholar
  11. Johnson KL, Kendall K, Roberts A (1971) Surface energy and the contact of elastic solids. Proc R Soc 324:301–313. doi: 10.1098/rspa.1971.0141 CrossRefGoogle Scholar
  12. Kim S, Shafiei F, Ratchford D, Li X (2011) Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures. Nanotechnology 22:115301. doi: 10.1088/0957-4484/22/11/115301 CrossRefGoogle Scholar
  13. Krensin V (2013) Nanoclusters as a new family of superconductors: potential for room temperature superconductivity. J Supercond Nov Magn 25:7111–7717. doi: 10.1007/s10948-012-1439-y Google Scholar
  14. Maugis D (1992) Adhesion of spheres: The JKR-DMT transition using a Dugdale model. J Colloid Interface Sci 150:243–269. doi: 10.1016/0021-9797(92)90285-T CrossRefGoogle Scholar
  15. Onal C, Sumer B, Ozcan O, Nain A, Sitti M (2011) Tip based robotic precision micro/nanomanipulation systems. Proc SPIE 8058. doi: 10.1117/12.889121Google Scholar
  16. Padgett M, Bowman R (2011) Tweezers with a twist. Nat Photon 5:343–348. doi: 10.1038/nphoton.2011.81 CrossRefGoogle Scholar
  17. Pennisi E (2014) Water’s tough skin. Science 343:1194–1197. doi: 10.1126/science.343.6176.1194 CrossRefGoogle Scholar
  18. Saito S, Miyazaki H, Sato T, Takahashi K (2002) Kinematics of mechanical and adhesional micromanipulation under a scanning electron microscope. J Appl Phys 92:5140. doi: 10.1063/1.1512313 CrossRefGoogle Scholar
  19. Sitti M (2004) Atomic Force microscope probe based controlled pushing for nanotribological characterization. IEEE/ASME Trans Mech 9:343–349. doi: 10.1109/TMECH.2004.828654 CrossRefGoogle Scholar
  20. Smalley R (2001) Of chemistry, love and nanobots. Sci Am 285:76–77. doi: 10.1038/scientificamerican0901-76 CrossRefGoogle Scholar
  21. Stankus DP, Lohse SE, Hutchison JE, Nason JA (2010) Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ Sci Technol 45:3238–3244. doi: 10.1021/es102603p CrossRefGoogle Scholar
  22. Sumer B, Sitti M (2008) Rolling and spinning friction characterization of fine particles using lateral force microscopy based contact pushing. J Adhes Sci Technol 22:481–506. doi: 10.1163/156856108X295527 CrossRefGoogle Scholar
  23. Tabor D (1975) Surface forces and surface interactions. J Colloid Interface Sci 58:67314–67326. doi: 10.1016/B978-0-12-404501-9.50009-2 Google Scholar
  24. Uchida M, Tonomura A (2010) Generation of electron beams carrying orbital angular momentum. Nature 464:737–739. doi: 10.1038/nature08904 CrossRefGoogle Scholar
  25. Verbeeck J, Tian H, Van Tendeloo G (2013) How to manipulate nanoparticles with an electron beam? Adv Mater 25:1114–1117. doi: 10.1002/adma.201204206 CrossRefGoogle Scholar
  26. Xie H, Regnier S (2009) High-efficiency automated nanomanipulation with parallel imaging/manipulationnel force microscopy. IEEE Trans Nanotechnol 11:21–33. doi: 10.1109/TNANO.2010.2041359 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Diego Alducin
    • 1
  • Gilberto Casillas
    • 1
  • Fernando Mendoza-Santoyo
    • 1
  • Arturo Ponce
    • 1
  • Miguel José-Yacamán
    • 1
    Email author
  1. 1.Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioUnited States

Personalised recommendations