Uniform, luminescent Eu:LuF3 nanoparticles

  • Ana I. BecerroEmail author
  • Daniel Gonzalez-Mancebo
  • Manuel Ocaña
Research Paper


A simple procedure for the synthesis of orthorhombic, uniform, LuF3 particles with two different morphologies (rhombus- and cocoon-like) and nanometer and sub-micrometer size, respectively, is reported. The method consists in the aging, at 120 °C for 2 h, a solution containing [BMIM]BF4 ionic liquid (0.5 mL) and lutetium acetate (in the case of the rhombi) or lutetium nitrate (in the case of the cocoons) (0.02 M) in ethylene glycol (total volume 10 mL). This synthesis method was also adequate for the synthesis of Eu3+-doped LuF3 particles of both morphologies, whose luminescence properties were investigated in detail. The experimental observations reported herein suggest that these materials are suitable phosphors for optoelectronic as well as in vitro biotechnological applications.


LuF3 Nanoparticles Ionic liquid Luminescence Concentration quenching 



Supported by MEC (Project. MAT2012-34919), Junta de Andalucía (JA FQM 06090) and CSIC (201460E005).

Supplementary material

11051_2015_2874_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1327 kb)


  1. Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, BerlinCrossRefGoogle Scholar
  2. Carniato F, Thangavel K, Tei L, Botta M (2013) Structure and dynamics of the hydration shells of citrate-coated GdF3 nanoparticles. J Mater Chem B 1:2442–2446CrossRefGoogle Scholar
  3. Cui Y, Fan X, Hong Z, Wang M (2006) Synthesis and luminescence properties of lanthanide (III)-doped YF3 nanoparticles. J Nanosci Nanotechnol 6:830–836CrossRefGoogle Scholar
  4. Diamente PR, Raudsepp M, van Veggel FCJM (2007) Dispersible Tm3+-doped nanoparticles that exhibit strong 1.47 μm photoluminescence. Adv Funct Mater 17:363–368CrossRefGoogle Scholar
  5. Downing E, Hesselink L, Ralston J, Macfarlane R (1996) A three-color, solid-state, three-dimensional display. Science 273:1185–1189CrossRefGoogle Scholar
  6. Feldmann C (2003) Polyol-mediated synthesis of nanoscale functional materials. Adv Funct Mater 13:101–107CrossRefGoogle Scholar
  7. Jacob DS, Bitton L, Grinblat J, Felner I, Koltypin Y, Gedanken A (2006) Are ionic liquids really a boon for the synthesis of inorganic materials? a general method for the fabrication of nanosized metal fluorides. Chem Mater 18:3162–3168CrossRefGoogle Scholar
  8. Kiran N (2014) Eu3 + ion doped sodium-lead borophosphate glasses for red light emission. J Mol Struct 93:1065–1066Google Scholar
  9. Li C, Yang J, Yang P, Lian H, Lin J (2008a) Hydrothermal synthesis of lanthanide fluorides LnF3 (Ln = La to Lu) nano-/microcrystals with multiform structures and morphologies. Chem Mater 20:4317–4326CrossRefGoogle Scholar
  10. Li C, Quan Z, Yang P, Huang S, Lian H, Lin J (2008b) Shape-controllable synthesis and upconversion properties of lutetium fluoride (doped with Yb3+/Er3+) microcrystals by hydrothermal process. J Phys Chem C 112:13395–13404CrossRefGoogle Scholar
  11. Li YP, Zhang JH, Luo YS, Zhang X, Hao ZD, Wang XJ (2011) Color control and white light generation of upconversion luminescence by operating dopant concentrations and pump densities in Yb3+, Er3+ and Tm3+ tri-doped Lu2O3 nanocrystals. J Mater Chem 21:2895–2900CrossRefGoogle Scholar
  12. Lin J, Huo J, Cai Y, Wang Q (2013) Controllable synthesis of Eu3+/Tb3+ activated lutetium fluorides nanocrystals and their photophysical properties. J Luminescence 144:1–5CrossRefGoogle Scholar
  13. Liu Q, Sun Y, Yang TS, Feng W, Li CG, Li FY (2011) Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc 133:17122–17125CrossRefGoogle Scholar
  14. Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, Yan CH (2006) High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc 128:6426–6436CrossRefGoogle Scholar
  15. Matijevic E (1993) Preparation and properties of uniform size colloids. Chem Mater 5:412–426CrossRefGoogle Scholar
  16. Maunier C, Doualan JL, Moncorge R, Cavalli E (2002) Growth, spectroscopic characterization, and laser performance of Nd:luVO4, a new infrared laser material that is suitable for diode pumping. J Opt Soc Am B 19:1794–1800CrossRefGoogle Scholar
  17. Pi D, Wang F, Fan X, Wang M, Zhang Y (2005) Luminescence behavior of Eu3+ doped LaF3 nanoparticles. Spectrochim Acta Part A 61:2455–2459CrossRefGoogle Scholar
  18. Privman V, Goia DV, Park J, Matijević E (1999) Mechanism of formation of monodisperse colloids by aggregation of nanosize precursors. J Colloid Interface Sci 213:36–45CrossRefGoogle Scholar
  19. Qiu P, Zhou N, Wang Y, Zhang C, Wang Q, Sun R, Gao G, Cui D (2014) Tuning lanthanide ion-doped upconversion nanocrystals with different shapes via a one-pot cationic surfactant-assisted hydrothermal strategy. CrystEngComm 16:1859–1863CrossRefGoogle Scholar
  20. Rao L, Lu W, Ren G, Wang H, Yi Z, Liu H, Zeng S (2014) Monodisperse LaF3 nanocrystals: shape-controllable synthesis, excitation-power-dependent multi-color tuning and intense near-infrared upconversion emission. Nanotechnology 25:065703CrossRefGoogle Scholar
  21. Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767CrossRefGoogle Scholar
  22. Singh NS, Ningthoujam RS, Phaomei G, Dorendrajit S, Vinu A, Vatsa RK (2012) Re-dispersion and film formation of GdVO4: Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies. Dalton Trans 41:4404–4412CrossRefGoogle Scholar
  23. Sudesh V, Asai K (2003) Spectroscopic and diode-pumped-laser properties of Tm, Ho:YLF; Tm, Ho:LuLF; and Tm, Ho:LuAG crystals: a comparative study. J Opt Soc Am B 20:1829–1837CrossRefGoogle Scholar
  24. Sun YJ, Chen Y, Tian LJ, Yu Y, Kong XG, Zhao JW, Zhang H (2007) Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals. Nanotechnology 18:275609CrossRefGoogle Scholar
  25. Tanner PA (2013) Some misconceptions concerning the electronic spectra of tri-positive europium and cerium. Chem Soc Rev 42:5090–5101CrossRefGoogle Scholar
  26. Vegard L (1921) The constitution of the mixed crystals and the filling of space of the atoms. Z Phys 5:17–26CrossRefGoogle Scholar
  27. Vijayakumar R, Maheshvaran K, Sudarsan V, Marimuthu K (2014) Concentration dependent luminescence studies on Eu3+ doped telluro fluoroborate glasses. J Lumin 154:160–167CrossRefGoogle Scholar
  28. Wang LY, Li YD (2006) Green upconversion nanocrystals for DNA detection. Chem Comm 24:2557–2559CrossRefGoogle Scholar
  29. Wang L, Li Y (2007) Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem Mater 19:727–731CrossRefGoogle Scholar
  30. Xiao S, Yang X, Ding JW, Yan XH (2007) Up-conversion in Yb3+-Tm3+Co-doped lutetium fluoride particles prepared by a combustion-fluorization method. J Phys Chem C 111:8161–8165CrossRefGoogle Scholar
  31. Yan R, Li Y (2005) Down/up conversion in Ln3+-doped YF3 nanocrystals. Adv Funct Mater 15:763–770CrossRefGoogle Scholar
  32. Yi GH, Lu HC, Zhao SY, Yue G, Yang WJ, Chen DP, Guo LH (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett 4:2191–2196CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ana I. Becerro
    • 1
    Email author
  • Daniel Gonzalez-Mancebo
    • 1
  • Manuel Ocaña
    • 1
  1. 1.Instituto de Ciencia de Materiales de Sevilla (CSIC-University of Seville)SevilleSpain

Personalised recommendations