Advertisement

Structural organization of C60 fullerene, doxorubicin, and their complex in physiological solution as promising antitumor agents

  • Yu. I. Prylutskyy
  • M. P. EvstigneevEmail author
  • V. V. Cherepanov
  • O. A. Kyzyma
  • L. A. Bulavin
  • N. A. Davidenko
  • P. Scharff
Research Paper

Abstract

Specific features of structural self-organization of C60 fullerene (1 nm size range), antitumor antibiotic doxorubicin (Dox) and their complex in physiological solution (0.9 % NaCl) have been investigated by means of atomic-force microscopy, dynamic light scattering, and small-angle X-ray scattering. Significant ordering of the mixed system, C60 + Dox, was observed, suggesting the complexation between these drugs, and giving insight into the mechanism of enhancement of Dox antitumor effect on simultaneous administration with C60 fullerene.

Keywords

C60 fullerene Doxorubicin Physiological solution Atomic-force microscopy Dynamic light scattering Small-angle X-ray scattering 

Notes

Acknowledgments

This work was supported, in part, by Russian Science Fund, Project No. 14-14-00328.

References

  1. Amer MS, Elliott JA, Maguire JF, Windle AH (2005) Calculations of the Raman spectra of C60 interacting with water molecules. Chem Phys Lett 411:395–398CrossRefGoogle Scholar
  2. Andrievsky GV, Klochkov VK, Bordyuh AB, Dovbeshko GI (2002) Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy. Chem Phys Lett 364:8–17CrossRefGoogle Scholar
  3. Aschberger K, Johnston HJ, Stone V, Aitken RJ, Tran CL, Hankin SM et al (2010) Review of fullerene toxicity and exposure-appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol 58:455–473CrossRefGoogle Scholar
  4. Avdeev MV, Khokhryakov AA, Tropin TV, Andrievsky GV, Klochkov VK, Derevyanchenko LI et al (2004) Structural features of molecular-colloidal solutions of C60 fullerenes in water by small-angle neutron scattering. Langmuir 20:4363–4368CrossRefGoogle Scholar
  5. Balch AL, Olmstead MM (1999) Structural chemistry of supramolecular assemblies that place flat molecular surfaces around the curved exteriors of fullerenes. Coord Chem Rev 185–186:601–617CrossRefGoogle Scholar
  6. Boyd PDW, Reed CA (2005) Fullerene-porphyrine constructs. Acc Chem Res 38:235–242CrossRefGoogle Scholar
  7. Brant J, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553CrossRefGoogle Scholar
  8. Buchelnikov AS, Evstigneev MP (2014) Quantitative correlation of the in vitro biological effect with parameters of molecular complexation in mutagen-interceptor systems. J Theor Biol 357:268–271CrossRefGoogle Scholar
  9. Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ (2014) Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med Res Rev 34:106–135CrossRefGoogle Scholar
  10. Cataldo F, Da Ros T (eds) (2008) Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes. Carbon materials: chemistry and physics, vol 1. Springer, DordrechtGoogle Scholar
  11. Chen KL, Elimelech M (2009) Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ Sci Technol 43:7270–7276CrossRefGoogle Scholar
  12. Dallavalle M, Leonzio M, Calvaresi M, Zerbetto F (2014) Explaining fullerene dispersion by using micellar solutions. ChemPhysChem 15:2998–3005CrossRefGoogle Scholar
  13. Deguchi S, Alargova RG, Tsujii K (2001) Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization. Langmuir 17:6013–6017CrossRefGoogle Scholar
  14. Evstigneev MP (2014) Hetero-association of aromatic molecules in aqueous solution. Int Rev Phys Chem 33:229–273CrossRefGoogle Scholar
  15. Evstigneev MP, Buchelnikov AS, Voronin DP, Rubin YuV, Belous LF, Prylutskyy YuI et al (2013) Complexation of C60 fullerene with aromatic drugs. ChemPhysChem 14:568–578CrossRefGoogle Scholar
  16. Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM et al (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39:4307–4316CrossRefGoogle Scholar
  17. Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [C60] fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–2585CrossRefGoogle Scholar
  18. Hirsch A, Brettreich M, Wudl F (2005) Fullerenes: chemistry and reactions. Wiley, New YorkGoogle Scholar
  19. Labille J, Masion A, Ziarelly F, Rose J, Brant J, Villieras F et al (2009) Hydration and dispersion of C60 in aqueous systems: the nature of water-fullerene interactions. Langmuir 25:11232–11235CrossRefGoogle Scholar
  20. Montellano A, Da Ros T, Bianco A, Prato M (2011) Fullerene C60 as multifunctional system for drug and gene delivery. Nanoscale 3:4035–4041CrossRefGoogle Scholar
  21. Panchuk RR, Prylutska SV, Chumak VV, Skorokhyd NR, Lehka LV, Evstigneev MP et al (2015) Application of C60 fullerene-doxorubicin complex for tumor cell treatment in vitro and in vivo. J Biomed Nanotechnol 11:1139–1152CrossRefGoogle Scholar
  22. Piosik J, Zdunek M, Kapuscinski J (2002) The modulation by xanthines of the DNA-damaging effect of polycyclic aromatic agents, part II. The stacking complexes of caffeine with doxorubicin and mitoxantrone. Biochem Pharmacol 63:635–646CrossRefGoogle Scholar
  23. Prylutska SV, Grynyuk II, Matyshevska OP, Prylutskyy YuI, Ritter U, Scharff P (2008) Anti-oxidant properties of C60 fullerenes in vitro. Fuller Nanotub Carbon Nanostruct 16:698–705CrossRefGoogle Scholar
  24. Prylutska SV, Burlaka AP, Klymenko PP, Grynyuk II, Prylutskyy YuI, Schuetze Ch et al (2011) Using water-soluble C60 fullerenes in anticancer therapy. Cancer Nanotechnol 2:105–110CrossRefGoogle Scholar
  25. Prylutska S, Bilyy R, Overchuk M, Bychko A, Andreichenko K, Stoika R et al (2012) Water-soluble pristine fullerenes C60 increase the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. J Biomed Nanotechnol 8:522–527CrossRefGoogle Scholar
  26. Prylutska S, Grynyuk I, Matyshevska O, Prylutskyy Y, Evstigneev M, Scharff P, Ritter U (2014) C60 fullerene as synergistic agent in tumor-inhibitory doxorubicin treatment. Drugs R D 14:333–340CrossRefGoogle Scholar
  27. Prylutskyy YuI, Buchelnikov AS, Voronin DP, Kostjukov VV, Ritter U, Parkinson JA et al (2013) C60 fullerene aggregation in aqueous solution. Phys Chem Chem Phys 15:9351–9360CrossRefGoogle Scholar
  28. Prylutskyy YuI, Petrenko VI, Ivankov OI, Kyzyma OA, Bulavin LA, Litsis OO et al (2014a) On the origin of C60 fullerene solubility in aqueous solution. Langmuir 30:3967–3970CrossRefGoogle Scholar
  29. Prylutskyy YuI, Evstigneev MP, Pashkova IS, Wyrzykowski D, Woziwodzka A, Gołuński G et al (2014b) Characterization of C60 fullerene complexation with antibiotic doxorubicin. Phys Chem Chem Phys 16:23164–23172CrossRefGoogle Scholar
  30. Skamrova GB, Laponogov I, Buchelnikov AS, Shckorbatov YG, Prylutska SV, Ritter U et al (2014) Interceptor effect of C60 fullerene on the in vitro action of aromatic drug molecules. Eur Biophys J 43:265–276CrossRefGoogle Scholar
  31. Traganos F, Kapuscinski J, Darzynkiewicz Z (1991) Caffeine modulates the effects of DNA-intercalating drugs in vitro: a flow cytometric and spectrophotometric analysis of caffeine interaction with novantrone, doxorubicin, ellipticine, and the doxorubicin analogue AD198. Cancer Res 51:3682–3689Google Scholar
  32. Woziwodzka A, Gołuński G, Wyrzykowski D, Kaźmierkiewicz R, Piosik J (2013) Caffeine and other methylxanthines as interceptors of food-borne aromatic mutagens: inhibition of Trp-P-1 and Trp-P-2 mutagenic activity. Chem Res Toxicol 26:1660–1673CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yu. I. Prylutskyy
    • 1
  • M. P. Evstigneev
    • 2
    Email author
  • V. V. Cherepanov
    • 3
  • O. A. Kyzyma
    • 1
    • 4
  • L. A. Bulavin
    • 1
  • N. A. Davidenko
    • 1
  • P. Scharff
    • 5
  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.Department of Biology and ChemistryBelgorod State UniversityBelgorodRussia
  3. 3.Institute of Physics of NAS of UkraineKyivUkraine
  4. 4.Joint Institute for Nuclear ResearchDubna, Moscow RegionRussia
  5. 5.Ilmenau University of TechnologyIlmenauGermany

Personalised recommendations