Dissolution and aggregation of Cu nanoparticles in culture media: effects of incubation temperature and particles size

  • Lingxiangyu Li
  • María Luisa Fernández-Cruz
  • Mona Connolly
  • Michael Schuster
  • José María NavasEmail author
Research Paper


Here, the effects of incubation temperature and particle size on the dissolution and aggregation behavior of copper nanoparticles (CuNPs) in culture media were investigated over 96 h, equivalent to the time period for acute cell toxicity tests. Three CuNPs with the nominal sizes of 25, 50, and 100 nm and one type of micro-sized particles (MPs, ~500 nm) were examined in culture media used for human and fish hepatoma cell lines acute tests. A large decrease in sizes of CuNPs in the culture media was observed in the first 24 h incubation, and subsequently the sizes of CuNPs changed slightly over the following 72 h. Moreover, the decreasing rate in size was significantly dependent on the incubation temperature; the higher the incubation temperature, the larger the decreasing rate in size. In addition to that, we also found that the release of copper ions depended on the incubation temperature. Moreover, the dissolution rate of Cu particles increased very fast in the first 24 h, with a slight increase over the following 72 h.


Cu nanoparticles Culture media Incubation temperature Aggregation Dissolution 



This research project was financed by the China Postdoctoral Science Foundation (2014M560124) and Graduate School of Technische Universität München. The authors acknowledge Luis Alte García-Olías (Department of Environment, INIA, Spain) for his technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alvarez PJJ, Colvin V, Lead J, Stone V (2009) Research priorities to advance eco-responsible nanotechnology. ACS Nano 3:1616–1619CrossRefGoogle Scholar
  2. Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468CrossRefGoogle Scholar
  3. Auffan M, Rose J, Wiesner WR, Bottero JY (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133CrossRefGoogle Scholar
  4. Böhme S, Stäark H, Meißner T, Springer A, Reemtsma T, Kühnel D, Busch W (2014) Quantification of Al2O3 nanoparticles in human cell lines applying inductively coupled plasma mass spectrometry (neb-ICP-MS, LA-ICP-MS) and flow cytometry-based methods. J Nanopart Res 16:2592CrossRefGoogle Scholar
  5. Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao Z, Zhu C, Fang X, Ma B, Wan L (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120CrossRefGoogle Scholar
  6. Di Bucchianico S, Fabbrizi MR, Misra SK, Valsami-Jones E, Berhanu D, Reip P, Bergamaschi E, Migliore L (2013) Multiple cytotoxic and genotoxic effects induced in vitro by differently shaped copper oxide nanomaterials. Mutagenesis 28:287–299CrossRefGoogle Scholar
  7. Dominguez-Medina S, Blankenburg J, Olson J, Landes CF, Link S (2013) Absorption of a protein monolayer via hydrophobic interactions prevents nanoparticle aggregation under harsh environmental conditions. ACS Sustain Chem Eng 1:833–842Google Scholar
  8. George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, Meng H, Wang X, Zhang H, Xia T, Hohman JN, Lin S, Zink JI, Weiss PS, Nel AE (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6:3745–3759CrossRefGoogle Scholar
  9. Glover RD, Miller JM, Hutchison JE (2011) Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 5:8950–8957CrossRefGoogle Scholar
  10. Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ (2011) Effects of copper nanoparticles exposure in the mussel mytilus galloprovincialis. Environ Sci Technol 45:9356–9362CrossRefGoogle Scholar
  11. Gong J, Yue H, Zhao Y, Zhao S, Zhao L, Lv J, Wang S, Ma X (2012) Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. J Am Chem Soc 134:13922–13925CrossRefGoogle Scholar
  12. Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314CrossRefGoogle Scholar
  13. Handy RD, Cornelis G, Fernandes T, Tsyusko O, Decho A, Sabo-Attwood T, Metcalfe C, Steevens JA, Klaine SJ, Koelmans AA, Horne N (2012) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31:15–31CrossRefGoogle Scholar
  14. Hinderliter PM, Minard KR, Orr G, Chrisler WB, Thrall BD, Pounds JG, Teeguarden JG (2010) ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol 7:36–49CrossRefGoogle Scholar
  15. Hwang GL, Hwang KC, Shieh YT, Lin SJ (2003) Preparation of carbon nanotube encapsulated copper nanowires and their use as a reinforcement for Y-Ba-Cu-O superconductors. Chem Mater 15:1353–1357CrossRefGoogle Scholar
  16. Isomura Y, Narushima T, Kawasaki H, Yonezawa T, Obora Y (2012) Surfactant-free single-nano-sized colloidal Cu nanoparticles for use as an active catalyst in Ullmann-coupling reaction. Chem Commun 48:3784–3786CrossRefGoogle Scholar
  17. Ji Z, Jin X, George S, Xia T, Meng H, Wang X, Suarez E, Zhang H, Hoek EMV, Godwin H, Nel AE, Zink JI (2010) Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol 44:7309–7314CrossRefGoogle Scholar
  18. Jiang XC, Chen WM, Chen CY, Xiong SX, Yu AB (2011) Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res Lett 6:32Google Scholar
  19. Kallay N, Zalac S (2002) Stability of nanodispersions: a model for kinetics of aggregation of nanoparticles. J Colloid Interface Sci 253:70–76CrossRefGoogle Scholar
  20. Kittler S, Greulich C, Diendorf J, Koller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554CrossRefGoogle Scholar
  21. Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behaviour, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851CrossRefGoogle Scholar
  22. Kobayashi M, Juillerat F, Galletto P, Bowen P, Borkovec M (2005) Aggregation and charging of colloidal silica particles: effect of particle size. Langmuir 21:5761–5769CrossRefGoogle Scholar
  23. Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B (2011) Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochim Biophys Acta 1810:361–373CrossRefGoogle Scholar
  24. Lammel T, Boisseaux P, Fernández-Cruz ML, Navas JM (2013) Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line HepG2. Part Fibre Toxicol 10:1–21CrossRefGoogle Scholar
  25. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921CrossRefGoogle Scholar
  26. Lee J, Mahendra S, Alvarez PJJ (2010) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4:3580–3590CrossRefGoogle Scholar
  27. Li F, Lei C, Shen Q, Li L, Wang M, Guo M, Yan H, Nie Z, Yao S (2013) Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array. Nanoscale 5:653–662CrossRefGoogle Scholar
  28. Lim J, Yeap SP, Che HX, Low SC (2013) Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett 8:381–394CrossRefGoogle Scholar
  29. Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175CrossRefGoogle Scholar
  30. Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913CrossRefGoogle Scholar
  31. Matsushima H, Taranovskyy A, Haak C, Grunder Y, Magnussen OM (2009) Reconstruction of Cu(100) electrode surfaces during hydrogen evolution. J Am Chem Soc 131:10362–10363CrossRefGoogle Scholar
  32. Moats MS, Hiskey JB, Collins DW (2000) The effect of copper, acid, and temperature on the diffusion coefficient of cupric ions in simulated electrorefining electrolytes. Hydrometallurgy 56:255–268CrossRefGoogle Scholar
  33. Mukherjee B, Weaver J (2010) Aggregation and charge behavior of metallic and nonmetallic nanoparticles in the presence of competing similarly-charged inorganic ions. Enviorn Sci Technol 44:3332–3338CrossRefGoogle Scholar
  34. Piret JP, Vankoningsloo S, Mejia J, Noёl F, Boilan E, Lambinon F, Zouboulis CC, Masereel B, Lucas S, Saout C, Toussaint O (2012) Differential toxicity of copper(II) oxide nanoparticles of similar hydrodynamic diameter on human differentiated intestinal Caco-2 cell monolayers is correlated in part to copper release and shape. Nanotoxicology 5:789–803CrossRefGoogle Scholar
  35. Prabhu BM, Ali SF, Murdock RC, Hussain SM, Srivatsan M (2010) Copper nanopaticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology 4:150–160CrossRefGoogle Scholar
  36. Rispoli F, Angelov A, Badia D, Kumar A, Seal S, Shah V (2010) Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli. J Hazard Mater 181:212–216CrossRefGoogle Scholar
  37. Sahu P, Prasad BLV (2013) Fine control of nanoparticle sizes and size distributions: temperature and ligand effects on the digestive ripening process. Nanoscale 5:1768–1771CrossRefGoogle Scholar
  38. Shaw BJ, Al-Bairuty G, Handy RD (2012) Effeccts of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquat Toxicol 116–117:90–101CrossRefGoogle Scholar
  39. Song L, Connolly M, Fernandez-Cruz ML, Vijver MG, Fernandez M, Conde E, de Snoo GR, Peijnenburg WJGM, Navas JM (2014) Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology 8:383–393CrossRefGoogle Scholar
  40. Stone V, Nowack B, Baun A, van den Brink N, von der Kammer F, Dusinska M, Handy R, Hankin S, Hassellöv M, Joner E, Fernandes TF (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408:1745–1754CrossRefGoogle Scholar
  41. Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95:300–312CrossRefGoogle Scholar
  42. Tejamaya M, Römer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46:7011–7017CrossRefGoogle Scholar
  43. Unrine JM, Tsyusko OV, Hunyadi SE, Judy JD, Bertsch PM (2010) Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles. J Environ Qual 39:1942–1953CrossRefGoogle Scholar
  44. Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575CrossRefGoogle Scholar
  45. Zhang W, Yao Y, Sullivan N, Chen YS (2011) Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 45:4422–4428CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Lingxiangyu Li
    • 1
  • María Luisa Fernández-Cruz
    • 2
  • Mona Connolly
    • 2
  • Michael Schuster
    • 3
  • José María Navas
    • 2
    Email author
  1. 1.State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijingChina
  2. 2.Department of EnvironmentSpanish National Institute for Agricultural and Food Research and Technology - INIAMadridSpain
  3. 3.Department of ChemistryTechnische Universität MünchenGarchingGermany

Personalised recommendations