Far-infrared spectroscopic study of CeO2 nanocrystals

  • Z. V. Popović
  • M. Grujić-Brojčin
  • N. Paunović
  • M. M. Radonjić
  • V. D. Araújo
  • M. I. B. Bernardi
  • M. M. de Lima
  • A. Cantarero
Research Paper
  • 291 Downloads

Abstract

We present the far-infrared reflectivity spectra of 5 nm-sized pure and copper-doped Ce1−xCuxO2−y (x = 0; 0.01 and 0.10) nanocrystals measured at room temperature in the 50–650 cm−1 spectral range. Reflectivity spectra were analyzed using the factorized form of the dielectric function, which includes the phonon and the free carriers contribution. Four oscillators with TO energies of approximately 135, 280, 370, and 490 cm−1 were included in the fitting procedure. These oscillators represent local maxima of the CeO2 phonon density of states, which is also calculated using the density functional theory. The lowest energy oscillator represents TA(L)/TA(X) phonon states, which become infrared-active Eu modes at the L and X points of the Brillouin zone (BZ). The second oscillator originates from TO(Γ) phonon states. The oscillator at ~400 cm−1 originates from Raman mode phonon states, which at the L point of BZ also becomes infrared-active Eu mode. The last oscillator describes phonons with dominantly LO(Γ) infrared mode character. The appearance of phonon density of states related oscillators, instead of single F2uinfrared-active mode in the far-infrared reflectivity spectra, is a consequence of the nanosized dimension of the CeO2 particles. The best fit spectra are obtained using the generalized Bruggeman model for inhomogeneous media, which takes into account the nanocrystal volume fraction and the pore shape.

Keywords

Nano ceria Far-infrared spectroscopy Phonon density of states Bruggeman model Nanoparticle characterization 

References

  1. Araújo VD, de Lima MM Jr, Cantarero M, Bernardi MIB, Bellido JDA, Assaf EM, Balzer R, Probst LFD, Fajardo HV (2013) Catalytic oxidation of n-hexane promoted by Ce1−xCuxO2 catalysts prepared by one-step polymeric precursor method. Mater Chem Phys 142:677–681CrossRefGoogle Scholar
  2. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562CrossRefGoogle Scholar
  3. Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys 24:636–664CrossRefGoogle Scholar
  4. Buckeridge J, Scanlon DO, Walsh A, Catlow CRA, Sokol AA (2013) Dynamical response and instability in ceria under lattice expansion. Phys Rev B 87(21):214304CrossRefGoogle Scholar
  5. Cantarero A (2013) Review on Raman scattering in semiconductor nanowires: I. Theory. J Nanophotonics 7(1):071598CrossRefGoogle Scholar
  6. Gehr RJ, Fischer GL, Boyd RW (1997) Nonlinear-optical response of porous-glass-based composite materials. J Opt Soc Am B 14(9):2310–2314CrossRefGoogle Scholar
  7. Gervais F (1983) High-temperature infrared reflectivity spectroscopy by scanning interferometry. In: Button KJ (ed) Infrared and millimeter waves. Academic Press, New York, pp 279–339Google Scholar
  8. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys 21(39):395502Google Scholar
  9. Gonzalez RJ, Zallen R, Berger H (1997) Infrared reflectivity and lattice fundamentals in anatase TiO2. Phys Rev B 55(11):7014–7017CrossRefGoogle Scholar
  10. Grujić-Brojčin M, Šćepanović MJ, Dohčević-Mitrović ZD, Hinić I, Matović B, Stanišić G, Popović ZV (2005) Infrared study of laser synthesized anatase TiO2 nanopowders. J Phys D 38(9):1415–1420CrossRefGoogle Scholar
  11. Grujić-Brojčin M, Šćepanović MJ, Dohčević-Mitrović ZD, Popović ZV (2006) Infrared study of nonstoichiometric anatase TiO2 nanopowders. Sci Sinter 38:183CrossRefGoogle Scholar
  12. Gürel T, Eryiğit R (2006) Ab initio pressure-dependent vibrational and dielectric properties of CeO2. Phys Rev B 74(1):014302CrossRefGoogle Scholar
  13. Kourouklis GA, Jayaraman A, Espinosa GP (1988) High-pressure Raman study of CeO2 to 35 GPa and pressure-induced phase transformation from the fluorite structure. Phys Rev B 37(8):4250–4253CrossRefGoogle Scholar
  14. Marabelli F, Wachter P (1987) Covalent insulator 2: optical reflectivity measurements. Phys Rev B 36(2):1234–1238CrossRefGoogle Scholar
  15. Maxwell-Garnett JC (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc Lond, Ser.4 203:385–420CrossRefGoogle Scholar
  16. Nakajima A, Yoshihara A, Ishigame M (1994) Defect-induced Raman spectra in doped CeO2. Phys Rev B 50(18):13297–13307CrossRefGoogle Scholar
  17. Orel Z (1999) Characterization of cerium dioxide dip-coated films by spectroscopic technique. Internet J Vib Spec Vol 3, Edition 4, Section 6 (www.ijvs.com). Accessed 20 June 2013
  18. Popović ZV, Dohčević-Mitrović Z, Šćepanović M, Grujić-Brojčin M, Aškrabić S (2011) Raman scattering on nanomaterials and nanostructures. Ann Phys 523(1–2):62–74CrossRefGoogle Scholar
  19. Popović ZV, Dohčević-Mitrović ZD, Paunović N, Radović M (2012) Evidence of charge delocalization in Ce1−xFex2+(3+)O2−y nanocrystals (x = 0, 0.06, 0.12). Phys Rev B 85:014302CrossRefGoogle Scholar
  20. Saarinen JJ, Vartiainen EM, Peiponen KE (2003) On tailoring of nonlinear spectral properties of nanocomposites having Maxwell Garnett or Bruggeman structure. Opt Rev 10(2):111–115CrossRefGoogle Scholar
  21. Santha NI, Sebastian MT, Mohanan P, Alford NM, Sarma K, Pullar RC, Kamba S, Pashkin A, Samukhina P, Petzelt J (2004) Effect of doping on the dielectric properties of cerium oxide in the microwave and far-infrared frequency range. J Am Ceram Soc 87(7):1233–1237CrossRefGoogle Scholar
  22. Spanier JE, Herman IP (2000) Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films. Phys Rev B 61(15):10437–10450CrossRefGoogle Scholar
  23. Tsunekawa S, Ishikawa K, Li ZQ, Kawazoe Y, Kasuya A (2000) Origin of anomalous lattice expansion in oxide nanoparticles. Phys Rev Lett 85(16):3440–3443CrossRefGoogle Scholar
  24. Weber WH, Hass KC, McBride JR (1993) Raman study of CeO2: second-order scattering, lattice dynamics, and particle-size effects. Phys Rev B 48(1):178–185CrossRefGoogle Scholar
  25. Wu L, Wiesmann HJ, Moodenbaugh AR, Klie RF, Zhu Y, Welch DO, Suenaga M (2004) Oxidation state and lattice expansion of CeO2−x nanoparticles as a function of particle size. Phys Rev B 69(12):125415CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Z. V. Popović
    • 1
  • M. Grujić-Brojčin
    • 1
  • N. Paunović
    • 1
  • M. M. Radonjić
    • 2
  • V. D. Araújo
    • 3
  • M. I. B. Bernardi
    • 3
  • M. M. de Lima
    • 4
  • A. Cantarero
    • 4
  1. 1.Center for Solid State Physics and New Materials, Institute of PhysicsUniversity of BelgradeBelgradeSerbia
  2. 2.Scientific Computing Laboratory, Institute of Physics BelgradeUniversity of BelgradeBelgradeSerbia
  3. 3.Instituto de FisicaUniversidade de São Paulo-USPSão CarlosBrazil
  4. 4.Instituto de Ciencia de Los MaterialesUniversidad de ValenciaValenciaSpain

Personalised recommendations