Advertisement

Cubic superparamagnetic nanoparticles of NiFe2O4 via fast microwave heating

  • W. S. Galvão
  • R. M. Freire
  • T. S. Ribeiro
  • I. F. Vasconcelos
  • L. S. Costa
  • V. N. Freire
  • F. A. M. Sales
  • J. C. Denardin
  • P. B. A. FechineEmail author
Research Paper

Abstract

This study demonstrated the possibility of using microwave heating as a fast and cheap method for synthesizing superparamagnetic nanoparticles. In this sense, NiFe2O4 samples were subjected to microwave heating at various temperatures to determine the lowest temperature at which the crystalline phase of the nanoparticles occurs. X-Ray powder diffraction, 57Fe Mössbauer spectroscopy, and transmission electron microscopy of the samples were performed to confirm the formed nanoparticles. It was observed a cubic structure of inverse spinel type with good crystallinity. The magnetic properties of the samples were studied using a vibrating sample magnetometer and was found to zero values to remanent magnetization and coercivity field. This behavior suggests superparamagnetic features for all samples. The crystallite size (9, 10, and 12 nm) and saturation magnetization (31–45 emu/g) were used as a function of the increase of the temperature treatment time. Blocking temperature was found by tracing remanent magnetization versus temperature.

Keywords

Ferrites Magnetic nanoparticles Hydrothermal synthesis Microwave Heating 

Notes

Acknowledgments

This work was partly sponsored by CAPES, CNPq, and FUNCAP (Brazilian agencies). The support from Fondecyt 1140195, Millennium Science Nucleus, Basic and Applied Magnetism Grant N°P10-061-F, and CONICYT BASAL CEDENNA FB0807 is gratefully acknowledged (Chilean agencies). The authors acknowledge the Laboratório Nacional de Nanotecnologia (LNNano/CNPEM) for providing the equipment and technical support for the experiments involving transmission electron microscopy (TEM).

References

  1. Amer MA, Meaz TM et al (2005) Mössbauer, infrared and X-ray studies of Ni0.5Zn0.5CrxFe2-xO4 ferrites. Egyp J Solids 28:3Google Scholar
  2. Barreto A, Santiago V et al (2011) Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy. J Nanopart Res 13(12):6545–6553CrossRefGoogle Scholar
  3. Bennett CO, Myers JE (1982) Momentum, heat, and mass transfer. McGraw-Hill, New YorkGoogle Scholar
  4. Bleicher L, Sasaki JM et al (2000) Development of a graphical interface for the Rietveld refinement program DBWS. J Appl Crystallogr 33(4):1189CrossRefGoogle Scholar
  5. Braga TP, Vasconcelos IF et al (2010) Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides. J Magn Magn Mater 322(6):633–637CrossRefGoogle Scholar
  6. Cullity BD, Graham CD (2011) Introduction to magnetic materials. Wiley, New YorkGoogle Scholar
  7. Dickson DPE, Berry FJ (1986) Mössbauer spectroscopy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. Freire R, Ribeiro T et al (2013) MZnFe2O4 (M=Ni, Mn) cubic superparamagnetic nanoparticles obtained by hydrothermal synthesis. J Nanopart Res 15(5):1–12Google Scholar
  9. Friedlander SK (2000) Smoke, dust, and haze. Oxford University Press, New YorkGoogle Scholar
  10. Gibb TC (1994) Encyclopedia of Inorganic Chemistry. Wiley, ChidresterGoogle Scholar
  11. Karakas ZK, Boncukcuoglu R et al (2013) The Investigation of the Removal of the Arsenic from Wastewaters by Using NiFe2O4 Nanoparticles Produced with Microwave Assisted Combustion Method. J Selcuk Univ Nat Appl Sci 2013:332–338Google Scholar
  12. Klabunde KJ, Richards R (2001) Nanoscale materials in chemistry. Wiley, New YorkCrossRefGoogle Scholar
  13. Koziej D, Floryan C et al (2013) Microwave dielectric heating of non-aqueous droplets in a microfluidic device for nanoparticle synthesis. Nanoscale 5(12):5468–5475CrossRefGoogle Scholar
  14. Latham AH, Williams ME (2008) Controlling Transport and Chemical Functionality of Magnetic Nanoparticles. Acc Chem Res 41(3):411–420CrossRefGoogle Scholar
  15. Markov IV (1995) Crystal growth for beginners: fundamentals of nucleation, crystal growth, and epitaxy. World Scientific, SingaporeCrossRefGoogle Scholar
  16. Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978CrossRefGoogle Scholar
  17. Petcharoen K, Sirivat A (2012) Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater Sci Eng, B 177(5):421–427CrossRefGoogle Scholar
  18. Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallography 22:151–152CrossRefGoogle Scholar
  19. Thomas JJ, Shinde AB, Krishna PSR, Kalarikkal N (2013) Cation distribution and micro level magnetic alignments in the nanosized nickel zinc ferrite. J Alloy Compd 546:77–83. doi: 10.1016/j.jallcom.2012.08.011
  20. Tong J, Cai X et al (2013) Efficient magnetic CoFe2O4 nanocrystal catalyst for aerobic oxidation of cyclohexane prepared by sol–gel auto-combustion method: effects of catalyst preparation parameters. J Sol-Gel Sci Technol 66(3):452–459CrossRefGoogle Scholar
  21. Wang L, Li FS (2001) Mossbauer study of nanocrystalline Ni-Zn ferrite. J Magn Magn Mater 223(3):233–237CrossRefGoogle Scholar
  22. Weidler P, Luster J et al (1998) The Rietveld method applied to the quantitative mineralogical and chemical analysis of a ferralitic soil. Eur J Soil Sci 49(1):95–105CrossRefGoogle Scholar
  23. Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1(1):22–31CrossRefGoogle Scholar
  24. Yamaura M, Camilo R et al (2004) Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J Magn Magn Mater 279(2):210–217CrossRefGoogle Scholar
  25. Zhang Z-G, YAO G-C et al (2010) Synthesis of NiFe2O4 spinel nanopowder via low-temperature solid-state reactions. J Northeastern Univ (Nat Sci) 31(6):868–872Google Scholar
  26. Zhang W, Jia S et al (2012) Studies of the magnetic field intensity on the synthesis of chitosan-coated magnetite nanocomposites by co-precipitation method. Mater Sci Eng, C 32(2):381–384CrossRefGoogle Scholar
  27. Zhang W, Jia S-Y et al (2013) Effects of alkaline precipitating agents on synthesis of magnetite nanomaterials by hydrothermal d-glucose method. J Nanopart Res 15(6):1–6Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • W. S. Galvão
    • 1
  • R. M. Freire
    • 1
  • T. S. Ribeiro
    • 2
  • I. F. Vasconcelos
    • 2
  • L. S. Costa
    • 3
  • V. N. Freire
    • 4
  • F. A. M. Sales
    • 4
  • J. C. Denardin
    • 5
  • P. B. A. Fechine
    • 1
    Email author
  1. 1.Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-QuímicaUniversidade Federal do Ceará–UFCFortalezaBrazil
  2. 2.Departamento de Engenharia Metalúrgica e de MateriaisUniversidade Federal do CearáFortalezaBrazil
  3. 3.Department of Inorganic Chemistry, Institute of ChemistryState University of Campinas–UNICAMPCampinasBrazil
  4. 4.Departamento de Física, Centro de CiênciasUniversidade Federal do CearáFortalezaBrazil
  5. 5.Departamento de FísicaUniversidad de Santiago de Chile, USACHSantiagoChile

Personalised recommendations