A simple synthesis of MnN0.43@C nanocomposite: characterization and application as battery material

  • Bettina Milke
  • Clemens Wall
  • Sarah Metzke
  • Guylhaine Clavel
  • Maximilian Fichtner
  • Cristina GiordanoEmail author
Research Paper


In the search of new materials for advanced batteries, manganese nitride is an appealing choice. However, in order to fully explore its potentiality, a suitable synthesis is the first mandatory step. In this contribution, nanosized manganese nitride covered by a graphitic shell has been prepared by a simple sol–gel-based process. Since graphite has a high thermal and chemical stability, it acts as stabilizing agent for the MnN0.43 nanoparticles. As a consequence, the particles do not oxidize for instance during the handling of the material and can be stored in air without special precautions. Furthermore, the graphitic shell makes the material more interesting for electrochemical applications, because graphite provides on the one hand an electrical conductivity, which is necessary for the function of active materials, and on the other hand also contributes to the Li storage capacity. The as-prepared nanocomposite was tested as anode material versus lithium metal as counter electrode, showing excellent cyclic stability, 230 mAh/g of capacity, and coulombic efficiencies close to 100 %. Since MnN0.43 possesses a theoretical capacity higher than commercial graphite and exhibits less polarization than several previously reported metal nitrides, it represents an attractive candidate as alternative/novel anode material. The method presented herein offers a simple route to prepare MnN0.43 nanoparticles encapsulated in carbon. The formation mechanism has been investigated, and the detailed characterization of the material before and after battery test (via XRD, HR-TEM, SAED, EELS) is discussed in the text.

Graphical Abstract


Manganese nitride Urea Nanoparticles Conversion electrode materials Lithium batteries Energy storage 



The authors kindly thank the Fritz-Haber-Institute of the MPG for HR-TEM and EELS. Financial support by the Max Planck Society is gratefully acknowledged.

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

11051_2014_2795_MOESM1_ESM.doc (2.6 mb)
Supplementary material 1 (DOC 2697 kb)


  1. Aragón MJ, León B, Pérez Vicente C et al (2009) Cobalt oxalate nanoribbons as negative-electrode material for lithium-ion batteries. Chem Mater 21:1834–1840. doi: 10.1021/cm803435p CrossRefGoogle Scholar
  2. Bem DS, Lampe-Önnerud CM, Olsen HP, zur Loye H-C (1996) Synthesis and structure of two new ternary nitrides: FeWN2 and MnMoN2. Inorg Chem 35:581–585. doi: 10.1021/ic9512338 CrossRefGoogle Scholar
  3. Boyko TD, Green RJ, Dronskowski R, Moewes A (2013) Electronic band gap reduction in manganese carbodiimide: MnNCN. J Phys Chem C 117:12754–12761. doi: 10.1021/jp4000768 CrossRefGoogle Scholar
  4. Choi J, Gillan EG (2009) Solvothermal metal azide decomposition routes to nanocrystalline metastable nickel, iron, and manganese nitrides. Inorg Chem 48:4470–4477. doi: 10.1021/ic900260u CrossRefGoogle Scholar
  5. Das B, Reddy MV, Malar P et al (2009) Nanoflake CoN as a high capacity anode for Li-ion batteries. Solid State Ionics 180:1061–1068. doi: 10.1016/j.ssi.2009.05.007 CrossRefGoogle Scholar
  6. DiSalvo FJ (1990) Solid-state chemistry: a a rediscovered chemical frontier. Science 247:649–655. doi: 10.1126/science.247.4943.649 CrossRefGoogle Scholar
  7. Du GH, Yuan ZY, Van Tendeloo G (2005) Transmission electron microscopy and electron energy-loss spectroscopy analysis of manganese oxide nanowires. Appl Phys Lett 86:063113. doi: 10.1063/1.1861963 CrossRefGoogle Scholar
  8. Giordano C, Erpen C, Yao W et al (2009) Metal nitride and metal carbide nanoparticles by a soft urea pathway. Chem Mater 21:5136–5144. doi: 10.1021/cm9018953 CrossRefGoogle Scholar
  9. Glatzel S, Schnepp Z, Giordano C (2013) From paper to structured carbon electrodes by inkjet printing. Angew Chem Int Ed 52:2355–2358. doi: 10.1002/anie.201207693 CrossRefGoogle Scholar
  10. Holleman AF, Wiberg E, Wiberg N (2007) Lehrbuch der anorganischen Chemie. de Gruyter, Berlin; New YorkGoogle Scholar
  11. Huang J-W, Li J, Peng H (2007) Microwave synthesis of manganese nitride. Powder Metall 50:137–141. doi: 10.1179/174329007X153323 CrossRefGoogle Scholar
  12. Komatsu T (2001) The first synthesis and characterization of cyameluric high polymers. Macromol Chem Phys 202:19–25. doi: 10.1002/1521-3935(20010101)202:1<19:AID-MACP19>3.0.CO;2-G CrossRefGoogle Scholar
  13. Koziej D, Krumeich F, Nesper R, Niederberger M (2009) Nonaqueous liquid-phase synthesis of nanocrystalline metal carbodiimides. A proof of concept for copper and manganese carbodiimides. J Mater Chem 19:5122. doi: 10.1039/b909131a CrossRefGoogle Scholar
  14. Kreiner G, Jacobs H (1992) Magnetische struktur von η-Mn3N2. J Alloy Compd 183:345–362. doi: 10.1016/0925-8388(92)90757-Z CrossRefGoogle Scholar
  15. Leineweber A, Niewa R, Jacobs H, Kockelmann W (2000) The manganese nitrides η-Mn3N2 and θ-Mn6N5 +x: nuclear and magnetic structures. J Mater Chem 10:2827–2834. doi: 10.1039/b006969h CrossRefGoogle Scholar
  16. Leineweber A, Jacobs H, Kockelmann W, Hull S (2003) Antiferromagnetic structure of ζ-MnN0.388 with “ε-type” nitrogen ordering. J Alloy Compd 359:114–118. doi: 10.1016/S0925-8388(03)00215-9 CrossRefGoogle Scholar
  17. Marsh H, Warburto AP (1970) Catalysis of graphitisation. J Appl Chem 20:133CrossRefGoogle Scholar
  18. Mitoraj D, Kisch H (2009) Analysis of electronic and photocatalytic properties of semiconductor powders through wavelength-dependent quasi-fermi level and reactivity measurements. J Phys Chem C 113:20890–20895. doi: 10.1021/jp903893w CrossRefGoogle Scholar
  19. Mochida I, Ohtsubo R, Takeshita K, Marsh H (1980) Catalytic graphitization of non-graphitizable carbon by chromium and manganese oxides. Carbon 18:117–123. doi: 10.1016/0008-6223(80)90019-6 CrossRefGoogle Scholar
  20. Morio K, Koizumi Y (2003) Magnetic and electrical properties of.EPSILON.- and.ETA.-Mn nitride thin films formed by the reactive sputtering method. J Magn Soc Jpn 27:344–347. doi: 10.3379/jmsjmag.27.344 CrossRefGoogle Scholar
  21. Naidich Yu I, Umanskii VP, Lavrinenko A (2007) Strength of the diamond-metal interface & soldering of diamonds. Intl Science Pub, CambridgeGoogle Scholar
  22. Pang S, Wang L, Li G, Zhang Z (2006) Effect of the atmosphere on the products of arc plasma method. J Dispers Sci Technol 27:1129–1131. doi: 10.1080/01932690600859143 CrossRefGoogle Scholar
  23. Prakash R, Wall C, Mishra AK et al (2011) Modified synthesis of [Fe/LiF/C] nanocomposite, and its application as conversion cathode material in lithium batteries. J Power Sources 196:5936–5944. doi: 10.1016/j.jpowsour.2011.03.007 CrossRefGoogle Scholar
  24. Prelinger O (1894) Über Stiekstoffverbindungen des Mangans. Monatsheft für Chemie 15:391–401CrossRefGoogle Scholar
  25. Schenck R, Kortengräber A (1933) Das System Mangan-Stickstoff. Zeitschrift für anorganische und allgemeine Chemie 210:273–285. doi: 10.1002/zaac.19332100308 CrossRefGoogle Scholar
  26. Sharma Y, Sharma N, Rao GVS, Chowdari BVR (2009) Nano-(Cd1/3Co1/3Zn1/3)CO3: a new and high capacity anode material for Li-ion batteries. J Mater Chem 19:5047. doi: 10.1039/b906471k CrossRefGoogle Scholar
  27. Sun Q, Fu Z-W (2007) An anode material of CrN for lithium-Ion batteries. Electrochem Solid-State Lett 10:A189. doi: 10.1149/1.2745087 CrossRefGoogle Scholar
  28. Sun Q, Fu Z-W (2008) Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries. Electrochim Acta 54:403–409. doi: 10.1016/j.electacta.2008.07.057 CrossRefGoogle Scholar
  29. Sun Q, Fu Z-W (2012) Mn3N2 as a novel negative electrode material for rechargeable lithium batteries. Appl Surf Sci 258:3197–3201. doi: 10.1016/j.apsusc.2011.11.063 CrossRefGoogle Scholar
  30. Suzuki K, Kaneko T, Yoshida H et al (2000) Crystal structure and magnetic properties of the compound MnN. J Alloy Compd 306:66–71. doi: 10.1016/S0925-8388(00)00794-5 CrossRefGoogle Scholar
  31. Tabuchi M, Takahashi M, Kanamaru F (1994) Relation between the magnetic transition temperature and magnetic moment for manganese nitrides MnNγ (0 < γ<1). J Alloy Compd 210:143–148. doi: 10.1016/0925-8388(94)90129-5 CrossRefGoogle Scholar
  32. Wall C, Prakash R, Kübel C et al (2012) Synthesis of [Co/LiF/C] nanocomposite and its application as cathode in lithium-ion batteries. J Alloy Compd 530:121–126. doi: 10.1016/j.jallcom.2012.03.080 CrossRefGoogle Scholar
  33. Yang H, Al-Brithen H, Smith AR et al (2001) Structural and magnetic properties of η-phase manganese nitride films grown by molecular-beam epitaxy. Appl Phys Lett 78:3860. doi: 10.1063/1.1378800 CrossRefGoogle Scholar
  34. Yuan J, Giordano C, Antonietti M (2010) Ionic liquid monomers and polymers as precursors of highly conductive, mesoporous, graphitic carbon nanostructures. Chem Mater 22:5003–5012. doi: 10.1021/cm1012729 CrossRefGoogle Scholar
  35. Zwicker U (1951) Untersuchungen im System Mangan-Stickstoff. Zeitschrift fur Metallkunde 42:274–276Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Bettina Milke
    • 1
  • Clemens Wall
    • 2
    • 3
  • Sarah Metzke
    • 1
    • 4
  • Guylhaine Clavel
    • 1
  • Maximilian Fichtner
    • 2
    • 3
  • Cristina Giordano
    • 1
    • 4
    Email author
  1. 1.Department of Colloid ChemistryMax-Planck-Institute of Colloids and InterfacesPotsdamGermany
  2. 2.Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  3. 3.Helmholtz Institute Ulm (HIU)UlmGermany
  4. 4.Physikalische Chemie/Molekulare Materialwissenschaften, Institut für ChemieTechnische Universität BerlinBerlinGermany

Personalised recommendations