Skip to main content
Log in

Magnetic BaFe12O19 nanofiber filter for effective separation of Fe3O4 nanoparticles and removal of arsenic

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles are promising in applications where magnetic separation is intended, although material losses via leaching mechanisms are often inevitable. Magnetic separations with widely available permanent magnets can effectively trap particles, leading to a complete removal of used or waste particles. In this report, we first demonstrate the synthesis of the thinnest (112.7 ± 16.4 nm) and most magnetic (71.96 emu g−1) barium hexaferrite (BaFe12O19, BHF—fridge magnet) via an organic solvent-free electrospinning procedure. When the fibers are then packed into a column, they clearly remove 12 nm magnetite (Fe3O4) nanoparticles quantitatively. The same BHF cartridge also removes more than 99.9 % As-treated magnetite nanoparticles at capacities up to 70 times of its weight. As a result, one liter of 150 μg L−1 As-contaminated water can be purified rapidly at a material cost of less than 2 US cents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Batlle X, Obradors X, Medarde M, Rodriguezcarvajal J, Pernet M, Valletregi M (1993) Surface spin canting in BaFe12O19 fine particles. J Magn Magn Mater 124:228–238

    Article  Google Scholar 

  • Beker U, Cumbal L, Duranoglu D, Kucuk I, Sengupta AK (2010) Preparation of Fe oxide nanoparticles for environmental applications: arsenic removal. Environ Geochem Health 32:291–296

    Article  Google Scholar 

  • Benito G, Morales MP, Requena J, Raposo V, Vazquez M, Moya JS (2001) Barium hexaferrite monodispersed nanoparticles prepared by the ceramic method. J Magn Magn Mater 234:65–72

    Article  Google Scholar 

  • Birks LS, Friedman H (1946) Particle size determination from X-ray line broadening. J Appl Phys 17:687–692

    Article  Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic—a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydroch Hydrob 31:9–18

    Article  Google Scholar 

  • Boddu VM, Abburi K, Talbott JL, Smith ED, Haasch R (2008) Removal of arsenic(III) and arsenic(V) from aqueous medium using chitosan-coated biosorbent. Water Res 42:633–642

    Article  Google Scholar 

  • Bothe JV, Brown PW (1999) Arsenic immobilization by calcium arsenate formation. Environ Sci Technol 33:3806–3811

    Article  Google Scholar 

  • Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986

    Article  Google Scholar 

  • Chen DH, Chen YY (2001) Synthesis of barium ferrite ultrafine particles by coprecipitation in the presence of polyacrylic acid. J Colloid Interface Sci 235:9–14

    Article  Google Scholar 

  • Chen MS, Shen ZX, Liu XY, Wang J (2000) Raman and magnetization studies of barium ferrite powder prepared by water-in-oil microemulsion. J Mater Res 15:483–487

    Article  Google Scholar 

  • Cheng RC, Wang HC, Beuhler MD (1994) Enhanced coagulation for arsenic removal. J Am Water Works Assoc 86:79–90

    Google Scholar 

  • Cumbal L, Sengupta AK (2005) Arsenic removal using polymer-supported hydrated iron (III) oxide nanoparticles: role of Donnan membrane effect. Environ Sci Technol 39:6508–6515

    Article  Google Scholar 

  • DeMarco MJ, Sengupta AK, Greenleaf JE (2003) Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Res 37:164–176

    Article  Google Scholar 

  • Dutta PK, Ray AK, Sharma VK, Millero FJ (2004) Adsorption of arsenate and arsenite on titanium dioxide suspensions. J Colloid Interface Sci 278:270–275

    Article  Google Scholar 

  • Fawell JK, Lund U, Mintz B, Galal-Gorchev H, Helmer R, Bonnefoy X, Espinoza O (2003) Guidelines for drinking-water quality—iron in drinking-water. World Health Organization, Geneva

    Google Scholar 

  • Finch CA (1973) Poly(vinyl alcohol): properties and applications. Wiley, London

    Google Scholar 

  • Geckeler KE, Volchek K (1996) Removal of hazardous substances from water using ultrafiltration in conjunction with soluble polymers. Environ Sci Technol 30:725–734

    Article  Google Scholar 

  • Ghimire KN, Inoue K, Makino K, Miyajima T (2002) Adsorptive removal of arsenic using orange juice residue. Sep Sci Technol 37:2785–2799

    Article  Google Scholar 

  • Goldberg HA (1988) High magnetic permeability composites containing fibers with ferrite fill. US Patent No. 4,725,490

  • Hao R, Xing RJ, Xu ZC, Hou YL, Gao S, Sun SH (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742

    Article  Google Scholar 

  • Huang JG, Zhuang HR, Li WL (2003) Synthesis and characterization of nano crystalline BaFe12O19 powders by low temperature combustion. Mater Res Bull 38:149–159

    Article  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  Google Scholar 

  • Jiang JQ (2001) Removing arsenic from groundwater for the developing world—a review. Water Sci Technol 44:89–98

    Google Scholar 

  • Kamala CT, Chu KH, Chary NS, Pandey PK, Ramesh SL, Sastry ARK, Sekhar KC (2005) Removal of arsenic(III) from aqueous solutions using fresh and immobilized plant biomass. Water Res 39:2815–2826

    Article  Google Scholar 

  • Kim DK, Mikhaylova M, Wang FH, Kehr J, Bjelke B, Zhang Y, Tsakalakos T, Muhammed M (2003) Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem Mater 15:4343–4351

    Article  Google Scholar 

  • Lafferty BJ, Loeppert RH (2005) Methyl arsenic adsorption and desorption behavior on iron oxides. Environ Sci Technol 39:2120–2127

    Article  Google Scholar 

  • Lee JS, Choi KH, Do GH, Kim SS, Chun DH, Kim HY, Lyoo WS (2004) Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. J Appl Polym Sci 93:1638–1646

    Article  Google Scholar 

  • Liu JJ, Gong CR, Fan GL (2012) Preparation and properties of barium-ferrite-containing glass ceramic fibers via an electrospinning/sol–gel process. J Sol-Gel Sci Technol 61:185–191

    Article  Google Scholar 

  • Manju GN, Raji C, Anirudhan TS (1998) Evaluation of coconut husk carbon for the removal of arsenic from water. Water Res 32:3062–3070

    Article  Google Scholar 

  • Mayo JT, Yavuz CT, Yean S, Cong LL, Shipley H, Yu WW, Falkner JC, Kan A, Tomson M, Colvin VL (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mat 8:71–75

    Article  Google Scholar 

  • Mayo JT, Lee SS, Yavuz CT, Yu WW, Prakash A, Falkner JC, Colvin VL (2011) A multiplexed separation of iron oxide nanocrystals using variable magnetic fields. Nanoscale 3:4560–4563

    Article  Google Scholar 

  • Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  Google Scholar 

  • Mohsen Q (2010) Barium hexaferrite synthesis by oxalate precursor route. J Alloy Compd 500:125–128

    Article  Google Scholar 

  • Mou FZ, Guan JG, Sun ZG, Fan XA, Tong GX (2010) In situ generated dense shell-engaged Ostwald ripening: a facile controlled-preparation for BaFe12O19 hierarchical hollow fiber arrays. J Solid State Chem 183:736–743

    Article  Google Scholar 

  • Mou FZ, Guan JG, Xiao ZD, Sun ZG, Shi WD, Fan XA (2011) Solvent-mediated synthesis of magnetic Fe2O3 chestnut-like amorphous-core/gamma-phase-shell hierarchical nanostructures with strong As(V) removal capability. J Mater Chem 21:5414–5421

    Article  Google Scholar 

  • Mou FZ, Guan JG, Ma HR, Xu LL, Shi WD (2012) Magnetic iron oxide chestnut like hierarchical nanostructures: preparation and their excellent arsenic removal capabilities. ACS Appl Mater Interface 4:3987–3993

    Article  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181

    Article  Google Scholar 

  • Patel HA, Byun J, Yavuz CT (2012) Arsenic removal by magnetic nanocrystalline barium hexaferrite. J Nanopart Res 14:881–887

    Article  Google Scholar 

  • Pattanayak J, Mondal K, Mathew S, Lalvani SB (2000) A parametric evaluation of the removal of As(V) and As(III) by carbon-based adsorbents. Carbon 38:589–596

    Article  Google Scholar 

  • Raven KP, Jain A, Loeppert RH (1998) Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ Sci Technol 32:344–349

    Article  Google Scholar 

  • Rezlescu L, Rezlescu E, Popa PD, Rezlescu N (1999) Fine barium hexaferrite powder prepared by the crystallisation of glass. J Magn Magn Mater 193:288–290

    Article  Google Scholar 

  • Shevchenko EV, Bodnarchuk MI, Kovalenko MV, Talapin DV, Smith RK, Aloni S, Heiss W, Alivisatos AP (2008) Gold/iron oxide core/hollow-shell nanoparticles. Adv Mater 20:4323–4329

    Article  Google Scholar 

  • Skomski R (2003) Nanomagnetics. J Phys Condens Mat 15:R841–R896

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Smith AH, Hopenhaynrich C, Bates MN, Goeden HM, Hertzpicciotto I, Duggan HM, Wood R, Kosnett MJ, Smith MT (1992) Cancer risks from arsenic in drinking-water. Environ Health Perspect 97:259–267

    Article  Google Scholar 

  • Su CM, Puls RW (2008) Arsenate and arsenite sorption on magnetite: relations to groundwater arsenic treatment using zerovalent iron and natural attenuation. Water Air Soil Pollut 193:65–78

    Article  Google Scholar 

  • Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  Google Scholar 

  • Suzuki TM, Tanco ML, Tanaka DAP, Matsunaga H, Yokoyama T (2001) Adsorption characteristics and removal of oxo-anions of arsenic and selenium on the porous polymers loaded with monoclinic hydrous zirconium oxide. Sep Sci Technol 36:103–111

    Article  Google Scholar 

  • Tang WS, Li Q, Li CF, Gao SA, Shang JK (2011) Ultrafine alpha-Fe2O3 nanoparticles grown in confinement of in situ self-formed “cage” and their superior adsorption performance on arsenic(III). J Nanopart Res 13:2641–2651

    Article  Google Scholar 

  • Tucek J, Zboril R, Namai A, Ohkoshi S (2010) Epsilon-Fe2O3: an advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling. Chem Mater 22:6483–6505

    Article  Google Scholar 

  • Tuutijarvi T, Lu J, Sillanpaa M, Chen G (2009) As(V) adsorption on maghemite nanoparticles. J Hazard Mater 166:1415–1420

    Article  Google Scholar 

  • Vaaramaa K, Lehto J (2003) Removal of metals and anions from drinking water by ion exchange. Desalination 155:157–170

    Article  Google Scholar 

  • Vahter M (2008) Health effects of early life exposure to arsenic. Basic Clin Pharmacol 102(2):204–211

    Article  Google Scholar 

  • Wasay SA, Haron MJ, Uchiumi A, Tokunaga S (1996) Removal of arsenite and arsenate ions from aqueous solution by basic yttrium carbonate. Water Res 30:1143–1148

    Article  Google Scholar 

  • Wones RG, Stadler BL, Frohman LA (1990) Lack of effect of drinking-water barium on cardiovascular risk-factors. Environ Health Perspect 85:355–359

    Article  Google Scholar 

  • Yao L, Haas TW, Guiseppi-Elie A, Bowlin GL, Simpson DG, Wnek GE (2003) Electrospinning and stabilization of fully hydrolyzed poly(vinyl alcohol) fibers. Chem Mater 15:1860–1864

    Article  Google Scholar 

  • Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong LL, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967

    Article  Google Scholar 

  • Yavuz CT, Prakash A, Mayo JT, Colvin VL (2009) Magnetic separations: from steel plants to biotechnology. Chem Eng Sci 64:2510–2521

    Article  Google Scholar 

  • Yavuz CT, Mayo JT, Suchecki C, Wang J, Ellsworth AZ, D’Couto H, Quevedo E, Prakash A, Gonzalez L, Nguyen C, Kelty C, Colvin VL (2010) Pollution magnet: nano-magnetite for arsenic removal from drinking water. Environ Geochem Health 32:327–334

    Article  Google Scholar 

  • Yean S, Cong LL, Yavuz CT, Mayo JT, Yu WW, Kan AT, Colvin VL, Tomson MB (2005) Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J Mater Res 20:3255–3264

    Article  Google Scholar 

  • Zhang JL, Fu JC, Li FS, Xie EQ, Xue DS, Mellors NJ, Peng Y (2012) BaFe12O19 single-particle-chain nanofibers: preparation, characterization, formation principle, and magnetization reversal mechanism. ACS Nano 6:2273–2280

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea, IWT (NRF-2012-C1AAA001-M1A2A2026588). J.B. thanks the National Research Foundation of Korea for a global Ph.D. fellowship (2013H1A2A1033423).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cafer T. Yavuz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1035 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, J., Patel, H.A. & Yavuz, C.T. Magnetic BaFe12O19 nanofiber filter for effective separation of Fe3O4 nanoparticles and removal of arsenic. J Nanopart Res 16, 2787 (2014). https://doi.org/10.1007/s11051-014-2787-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2787-2

Keywords

Navigation