CdS x Se1−x alloyed quantum dots-sensitized solar cells based on different architectures of anodic oxidation TiO2 film

  • Zhen Li
  • Libo Yu
  • Yingbo Liu
  • Shuqing SunEmail author
Research Paper


Nanostructured TiO2 translucent films with different architectures including TiO2 nanotube (NT), TiO2 nanowire (NW), and TiO2 nanowire/nanotube (NW/NT) have been produced by second electrochemical oxidization of TiO2 NT with diameter around 90–110 nm via modulation of applied voltage. These TiO2 architectures are sensitized with CdS x Se1−x alloyed quantum dots (QDs) in sizes of around 3–5 nm aiming to tune the response of the photoelectrochemical properties in the visible region. One-step hydrothermal method facilitates the deposition of CdS x Se1−x QDs onto TiO2 films. These CdS x Se1−x QDs exhibit a tunable range of light absorption with changing the feed molar ratio of S:Se in precursor solution, and inject electrons into TiO2 films upon excitation with visible light, enabling their application as photosensitizers in sensitized solar cells. Power conversion efficiency (PCE) of 2.00, 1.72, and 1.06 % are achieved with CdS x Se1−x (obtained with S:Se = 0:4) alloyed QDs sensitized solar cells based on TiO2 NW/NT, TiO2 NW, and TiO2 NT architectures, respectively. The significant enhancement of power conversion efficiency obtained with the CdS x Se1−x /TiO2 NW/NT solar cell can be attributed to the extended absorption of light region tuned by CdS x Se1−x alloyed QDs and enlarged deposition of QDs and efficient electrons transport provided by TiO2 NW/NT architecture.


Quantum dots-sensitized solar cells Electrochemical oxidization Hydrothermal Titanium dioxide Alloyed quantum dots Energy conversion 



The authors gratefully acknowledge the support for this work from the Key Project of Tianjin Sci-Tech Support Program (No. 08ZCKFH01400).

Supplementary material

11051_2014_2779_MOESM1_ESM.doc (2.4 mb)
Supplementary material 1 (DOC 2,458 kb)


  1. Baker DR, Kamat PV (2009) Photosensitization of TiO2 Nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv Funct Mater 19:805–811. doi: 10.1002/adfm.200801173 CrossRefGoogle Scholar
  2. Balis N, Dracopoulos V, Bourikas K, Lianos P (2013) Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes. Electrochim Acta 91:246–252. doi: 10.1016/j.electacta.2013.01.004 CrossRefGoogle Scholar
  3. Beard MC, Luther JM, Semonin OE, Nozik AJ (2012) Third generation photovoltaics based on multiple exciton generation in quantum confined semicondutors. Acc Chem Res 46:1252–1260. doi: 10.1021/ar3001958 CrossRefGoogle Scholar
  4. Bisquert J, Zaban A, Greenshtein M, Mora-Seró I (2004) Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J Am Chem Soc 126:13550–13559. doi: 10.1021/ja047311k CrossRefGoogle Scholar
  5. Chakrapani V, Baker D, Kamat PV (2011) Understanding the role of the sulfide redox couple (S2−/Sn2−) in quantum dot-sensitized solar cells. J Am Chem Soc 133:9607–9615. doi: 10.1021/ja203131b CrossRefGoogle Scholar
  6. Chen Q, Xu D (2009) Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. J Phys Chem C 113:6310–6314. doi: 10.1021/jp900336e CrossRefGoogle Scholar
  7. Chen C, Li F, Li G, Tan F, Li S, Ling L (2013) Double-sided transparent electrodes of TiO2 nanotube arrays for highly efficient CdS quantum dot-sensitized photoelectrodes. J Mater Sci 49:1868–1874. doi: 10.1007/s10853-013-7875-7 CrossRefGoogle Scholar
  8. Cheng S, Fu W, Yang H, Zhang L, Ma J, Zhao H, Sun M, Yang L (2012) Photoelectrochemical performance of multiple semiconductors (CdS/CdSe/ZnS) cosensitized TiO2 photoelectrodes. J Phys Chem C 116:2615–2621. doi: 10.1021/jp209258r CrossRefGoogle Scholar
  9. Choi Y, Seol M, Kim W, Yong K (2014) Chemical bath deposition of stoichiometric CdSe quantum dots for efficient quantum-dots-sensitized solar cell application. J Phys Chem C 118:5664–5670. doi: 10.1021/jp411221q CrossRefGoogle Scholar
  10. Ellingson RJ, Beard MC, Johnson JC, Yu P, Micic OI, Nozik AJ, Shabaev A, Efros AL (2005) Highly efficient multiple exction generation in colloidal PbSe and PbS quantum dots. Nano Lett 5:865–871. doi: 10.1021/nl0502672 CrossRefGoogle Scholar
  11. Gao J, Perkins CL, Luther JM, Hanna MC, Chen HY, Semonin OE, Nozik AJ, Ellingson RJ, Beard MC (2011) n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Lett 11:3263–3266. doi: 10.1021/nl2015729 CrossRefGoogle Scholar
  12. Gertman R, Osherov A, Golan Y, Visoly-Fisher I (2014) Chemical bath deposited PbS thin film on ZnO nanowires for photovoltaic applications. Thin Solid Films 550:149–155. doi: 10.1016/j.tsf.2013.10.160 CrossRefGoogle Scholar
  13. González-Pedro V, Xu X, Mora-Será I, Bisquert J (2010) Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano 4:5783–5790. doi: 10.1021/nn101534y CrossRefGoogle Scholar
  14. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344. doi: 10.1038/35104607 CrossRefGoogle Scholar
  15. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol, C 4:145–153. doi: 10.1016/S1389-5567(03)00026-1 CrossRefGoogle Scholar
  16. Han Z, Wei L, Tang L, Chen C, Pan H, Chen J (2013) Aligned CdSe@ZnO flower-rod core-shell nanocable as photovoltaic application. J Power Sources 239:546–552. doi: 10.1016/j.jpowsour.2013.02.081 CrossRefGoogle Scholar
  17. Hwang JY, Lee SA, Lee YH, Seok SI (2010) Improved photovoltaic response of nanocrystalline CdS-sensitized solar cells through interface control. ACS Appl Mater Interfaces 2:1343–1348. doi: 10.1021/am900917n CrossRefGoogle Scholar
  18. Itzhaik Y, Niitsoo O, Page M, Hodes G (2009) Sb2S3-sensitized nanoporous TiO2 solar cells. J Phys Chem C 113:4254–4256. doi: 10.1021/jp900302b CrossRefGoogle Scholar
  19. Joseph DP, Kovendhan M, Suthanthiraraj SA, Maruthamuthu P, Venkateswaran C (2011) Fabrication of dye sensitized solar cell using Cr doped Cu-Zn-Se type chalcopyrite thin film. Phys Status Solidi A 9:2215–2219. doi: 10.1002/pssa.201026368 CrossRefGoogle Scholar
  20. Kalanur SS, Chae SY, Joo OS (2013) Transparent Cu1.8 and CuS thin films on FTO as efficient counter electrode for quantum dot solar cells. Electrochim Acta 103:91–95. doi: 10.1016/j.electacta.2013.04.041 CrossRefGoogle Scholar
  21. Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753. doi: 10.1021/jp806791s CrossRefGoogle Scholar
  22. Kamat PV (2012) TiO2 nanostructures: recent physical chemistry advances. J Phys Chem C 116:11849–11851. doi: 10.1021/jp305026h CrossRefGoogle Scholar
  23. Kamat PV (2013) Quantum dot solar cells. The next big thing in photovoltaics. J Phys Chem Lett 4:908–918. doi: 10.1021/jz400052e CrossRefGoogle Scholar
  24. Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J Am Chem Soc 130:4007–4015. doi: 10.1021/ja0782706 CrossRefGoogle Scholar
  25. Kovendhan M, Joseph DP, Manimuthu P, Ganesan S, Sambasivam S, Maruthamuthu P, Suthanthiraraj SA, Venkateswaran C, Mohan R (2011) Spray deposited Nb2O5 thin film electrodes for fabrication of dye sensitized solar cells. Trans IIM 64:185–188. doi: 10.1007/s12666-011-0036-2 Google Scholar
  26. Kovendhan M, Joseph DP, Manimuthu P, Sanmbasivam S, Karthick SN, Vijayarangamuthu K, Sendilkumar A, Asokan K, Kim HJ, Choi BC, Venkateswaran C, Mohan R (2013) ‘Li’ doping induced physicochemical property modifications of MoO3 thin films. Appl Surf Sci 284:624–633. doi: 10.1016/j.apsusc.2013.07.143 CrossRefGoogle Scholar
  27. Lee YL, Lo YS (2009) Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater 19:604–609. doi: 10.1002/adfm.200800940 CrossRefGoogle Scholar
  28. Lee H, Wang M, Chen P, Gamelin DR, Zakeeruddin SM, Grätzel M, Nazeeruddin MK (2009a) Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett 9:4221–4227. doi: 10.1021/nl902438d CrossRefGoogle Scholar
  29. Lee HJ, Chen P, Moon SJ, Sauvage F, Sivula K, Bessho T, Gamelin DR, Comte P, Zakeeruddin SM, Seok SI, Grätzel M, Nazeeruddin MK (2009b) Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt comlex as hole mediator. Langmuir 25:7602–7608. doi: 10.1021/la900247r CrossRefGoogle Scholar
  30. Li Z, Yu L, Liu Y, Sun S (2014a) CdS/CdSe quantum dots co-sensitized TiO2 nanowire/nanotube solar cells with enhanced efficiency. Electrochim Acta 129:379–388. doi: 10.1016/j.electacta.2014.02.145 CrossRefGoogle Scholar
  31. Li Z, Yu L, Liu Y, Sun S (2014b) Enhanced photovoltaic performance of solar cell based on front-side illuminated CdSe/CdS double-sensitized TiO2 nanotube arrays electrode. J Mater Sci 49:6392–6403. doi: 10.1007/s10853-014-8366-1 CrossRefGoogle Scholar
  32. Lim JH, Choi J (2007) Titanium oxide nanowires originating from anodically grown nanotubes: the bamboo-splitting model. Small 3:1504–1507. doi: 10.1002/smll.200700114 CrossRefGoogle Scholar
  33. Luan X, Guan D, Wang Y (2012) Facile synthesis and morphology control of bamboo-type TiO2 nanotube arrays for high-efficiency dye-sensitized solar cells. J Phys Chem C 116:14257–14263. doi: 10.1021/jp305280q CrossRefGoogle Scholar
  34. Mao W, Guo J, Yang W, Wang C, He J, Chen J (2007) Synthesis of high-quality near-infrared-emitting CdTeS alloyed quantum dots via the hydrothermal method. Nanotechnology 18:485611. doi: 10.1088/0957-4484/18/48/485611 CrossRefGoogle Scholar
  35. Meyer GJ (2010) The 2010 millennium technology grand prize: dye-sensitized solar cells. ACS Nano 4:4337–4343. doi: 10.1021/nn101591h CrossRefGoogle Scholar
  36. Moon SJ, Itzhaik Y, Yum JH, Zakeeruddin SM, Hodes G, Grätzel M (2010) Sb2S3-based Mesoscopic solar cell using an organic hole conductor. J Phys Chem Lett 1:1524–1527. doi: 10.1021/jz3004602 CrossRefGoogle Scholar
  37. Nozik AJ (2008) Multiple excition generation in semiconductor quantum dots. Chem Phys Lett 457:3–11. doi: 10.1016/j.cplett.2008.03.094 CrossRefGoogle Scholar
  38. Nozik AJ, Miller JR (2010) Introduction to solar photon conversion. Chem Rev 110:6443–6445. doi: 10.1021/cr1003419 CrossRefGoogle Scholar
  39. Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple excition generation to third-generation photovoltaic solar cells. Chem Rev 110:6873–6890. doi: 10.1021/cr900289f CrossRefGoogle Scholar
  40. Pan J, Utama MI, Zhang Q, Liu X, Peng B, Wong LM, Sum TC, Wang S, Xiong Q (2012) Composition-tunable vertically aligned CdSxSe1−x nanowire arrays via van der waals epitaxy: investigation of optical properties and photocatalytic behavior. Adv Mater 24:4151–4156. doi: 10.1002/adma.201104996 CrossRefGoogle Scholar
  41. Pattantyus-Abraham AG, Kammer IJ, Barkhouse AR, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin MK, Grätzel M, Sargent EH (2010) Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4:3374–3380. doi: 10.1021/nn100335g CrossRefGoogle Scholar
  42. Raj CJ, Karthick SN, Park S, Hemalatha KV, Kim SK, Prabakar K, Kim HJ (2014) Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell. J Power Sources 248:439–446. doi: 10.1016/j.jpowsour.2013.09.076 CrossRefGoogle Scholar
  43. Rogach AL, Kornowski A, Gao M, Eychmuller A, Weller H (1999) Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J Phys Chem B 103:3065–3069. doi: 10.1021/jp984833b CrossRefGoogle Scholar
  44. Rühle S, Shalom M, Zaban A (2010) Quantum-dot-sensitized solar cells. Chem Phys Chem 11:2290–2304. doi: 10.1002/cphc.201000069 Google Scholar
  45. Santra PK, Kamat PV (2012) Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J Am Chem Soc 134:2508–2511. doi: 10.1021/ja211224s CrossRefGoogle Scholar
  46. Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng X, Paulose M, Seabold JA, Choi KS, Grimes CA (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113:6327–6359. doi: 10.1021/jp809385x CrossRefGoogle Scholar
  47. Sharmoukh W, Allam NK (2012) TiO2 nanotube-based dye-sensitized solar cell using new photosensitizer with enhanced open-circuit voltage and fill factor. ACS Appl Mater Interfaces 4:4413–4418. doi: 10.1021/am301089t CrossRefGoogle Scholar
  48. Shin Y, Lee S (2008) Self-organized regular arrays of anodic TiO2 nanotubes. Nano Lett 8:3171–3173. doi: 10.1021/nl801422w CrossRefGoogle Scholar
  49. Song X, Wang M, Deng J, Yang Z, Ran C, Zhang X, Yao X (2013) One-step preparation and assembly of aqueous colloidal CdSxSe1−x nanocrystals within mesoporous TiO2 films for quantum dot-sensitized solar cells. ACS Appl Mater Interfaces 5:5139–5148. doi: 10.1021/am4009924 CrossRefGoogle Scholar
  50. Sun WT, Yu Y, Pan HY, Gao XF, Chen Q, Peng LM (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130:1124–1125. doi: 10.1021/ja0777741 CrossRefGoogle Scholar
  51. Swafford LA, Weigand LA, Bowers MJ, McBride JR, Rapaport JL, Watt TL, Dixit SK, Feldman LC, Rosenthal SJ (2006) Homogeneously alloyed CdSxSe1−x nanocrystals: synthesis, characterization, and composition/size-dependent band gap. J Am Chem Soc 128:12299–12306. doi: 10.1021/ja063939e CrossRefGoogle Scholar
  52. Toyoda T, Shen Q (2012) Quantum-dot-sensitized solar cells: effect of nanostructured TiO2 morphologies on photovoltaic properties. J Phys Chem Lett 3:1885–1893. doi: 10.1021/jz3004602 CrossRefGoogle Scholar
  53. Yu L, Li Z, Liu Y, Cheng F, Sun S (2014a) Enhanced photoelectrochemical performance of CdSe/Mn-CdS/TiO2 nanorod arrays solar cell. Appl Surf Sci 309:255–262. doi: 10.1016/j.apsusc.2014.05.023 CrossRefGoogle Scholar
  54. Yu L, Li Z, Liu Y, Cheng F, Sun S (2014b) Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application. Appl Surf Sci 305:359–365. doi: 10.1016/j.apsusc.2014.03.090 CrossRefGoogle Scholar
  55. Zaban A, Greenshtein M, Bisquert J (2003) Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. Chem Phys Chem 4:859–864. doi: 10.1002/cphc.200200615 Google Scholar
  56. Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotube arrays. Nano Lett 7:69–74. doi: 10.1021/nl062000o CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of ChemistryTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations