Advertisement

Increased bioassay sensitivity of bioactive molecule discovery using metal-enhanced bioluminescence

  • Karina Golberg
  • Amit Elbaz
  • Ronald McNeil
  • Ariel Kushmaro
  • Chris D. Geddes
  • Robert S. Marks
Research Paper
Part of the following topical collections:
  1. Nanobiotechnology

Abstract

We report the use of bioluminescence signal enhancement via proximity to deposited silver nanoparticles for bioactive compound discovery. This approach employs a whole-cell bioreporter harboring a plasmid-borne fusion of a specific promoter incorporated with a bioluminescence reporter gene. The silver deposition process was first optimized to provide optimal nanoparticle size in the reaction time dependence with fluorescein. The use of silver deposition of 350 nm particles enabled the doubling of the bioluminescent signal amplitude by the bacterial bioreporter when compared to an untouched non-silver-deposited microtiter plate surface. This recording is carried out in the less optimal but necessary far-field distance. SEM micrographs provided a visualization of the proximity of the bioreporter to the silver nanoparticles. The electromagnetic field distributions around the nanoparticles were simulated using Finite Difference Time Domain, further suggesting a re-excitation of non-chemically excited bioluminescence in addition to metal-enhanced bioluminescence. The possibility of an antiseptic silver effect caused by such a close proximity was eliminated disregarded by the dynamic growth curves of the bioreporter strains as seen using viability staining. As a highly attractive biotechnology tool, this silver deposition technique, coupled with whole-cell sensing, enables increased bioluminescence sensitivity, making it especially useful for cases in which reporter luminescence signals are very weak.

Keywords

Metal-enhanced fluorescence Plasmons Surface-enhanced fluorescence Bioluminescence Bioreporters Bioactive molecules Nanobiotechnology 

Notes

Acknowledgments

This work was supported by the Singapore National Research Foundation under the CREATE program: Nanomaterials for Energy and Water Management; a Levi Eshkol scholarship from the Israeli Ministry of Science and Technology and Shimona Geresh award. The authors also thank the IUI, Eilat, Israel, for the use of its facilities, and Dr. Evgeni Eltzov, Dr. Maya Shnit-Orlande, and Nahshon Siboni for sample collection, technical support, and guidance.

Supplementary material

11051_2014_2770_MOESM1_ESM.tif (42 kb)
Fig. S1 Representative growth curves of E. coli K802NR, TV1061, and DPD2794 bioreporters and the influence of selected coral isolate supernatants on E. coli K802NR growth both on silver coated (a) and transparent (b) microtiter plates. Supplementary material 1 (TIFF 42 kb)

References

  1. Aslan K, Lakowicz JR, Geddes CD (2005a) Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date. Anal Bioanal Chem 382:926–933CrossRefGoogle Scholar
  2. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005b) Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons. J Fluoresc 15:643–654CrossRefGoogle Scholar
  3. Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212CrossRefGoogle Scholar
  4. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901–912CrossRefGoogle Scholar
  5. Chang ST, Lee HJ, Gu MB (2004) Enhancement in the sensitivity of an immobilized cell-based soil biosensor for monitoring PAH toxicity. Sens Act B Chem 97:272–276CrossRefGoogle Scholar
  6. Charley RC, Bull AT (1979) Bioaccumulation of silver by a multispecies community of bacteria. Arch Microbiol 123:239–244CrossRefGoogle Scholar
  7. Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, Brown NL, Lloyd JR, Hobman JL, CsoÈregi E, Johansson G, Mattiasson B (1999) Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387:235–244CrossRefGoogle Scholar
  8. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322CrossRefGoogle Scholar
  9. Dragan AI, Geddes CD (2012) Metal-enhanced fluorescence: the role of quantum yield, Q0, in enhanced fluorescence. Appl Phys Lett 100:093115-093114CrossRefGoogle Scholar
  10. Dragan AI, Golberg K, Elbaz A, Marks R, Zhang Y, Geddes CD (2011) Two-color, 30 second microwave-accelerated Metal-Enhanced Fluorescence DNA assays: a new Rapid Catch and Signal (RCS) technology. J Immunol Meth 366:1–7CrossRefGoogle Scholar
  11. Drenkard E (2003) Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5:1213–1219CrossRefGoogle Scholar
  12. Eldridge ML, Sanseverino J, Layton AC, Easter JP, Schultz TW, Sayler GS (2007) Saccharomyces cerevisiae BLYAS, a new bioluminescent bioreporter for detection of androgenic compounds. Appl Environ Microbiol 73:6012–6018CrossRefGoogle Scholar
  13. Eltzov E, Marks R (2011) Whole-cell aquatic biosensors. Anal Bioanal Chem 400:895–913CrossRefGoogle Scholar
  14. Eltzov E, Prilutsky D, Kushmaro A, Marks RS, Geddes CD (2009) Metal-enhanced bioluminescence: an approach for monitoring biological luminescent processes. Appl Phys Lett 94:083901–083901–083901–083903CrossRefGoogle Scholar
  15. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668CrossRefGoogle Scholar
  16. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9:929–943CrossRefGoogle Scholar
  17. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695CrossRefGoogle Scholar
  18. Gellert M, O’Dea MH, Itoh T, Tomizawa J (1976) Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc Natl Acad Sci USA 73:4474–4478CrossRefGoogle Scholar
  19. Golberg K, Eltzov E, Shnit-Orland M, Marks RS, Kushmaro A (2011) Characterization of quorum sensing signals in coral-associated bacteria. Microb Ecol 61:783–792CrossRefGoogle Scholar
  20. Golberg K, Pavlov V, Marks RS, Kushmaro A (2013) Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling 29:669–682CrossRefGoogle Scholar
  21. Gu MB, Mitchell RJ, Kim BC (2004) Whole-cell-based biosensors for environmental biomonitoring and application. Adv Biochem Eng Biotechnol 87:269–305Google Scholar
  22. Joint I, Allan Downie J, Williams P (2007) Bacterial conversations: talking, listening and eavesdropping. An introduction. Philos Trans R Soc B 362:1115–1117CrossRefGoogle Scholar
  23. Landsdown AB, Williams A (2007) Bacterial resistance to silver in wound care and medical devices. J Wound Care 16:15–19CrossRefGoogle Scholar
  24. Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55:123–142Google Scholar
  25. Melamed S, Lalush C, Elad T, Yagur-Kroll S, Belkin S, Pedahzur R (2012) A bacterial reporter panel for the detection and classification of antibiotic substances. Microb Biotechnol 5:536–548CrossRefGoogle Scholar
  26. Middleton B, Rodgers HC, Camara M, Knox AJ, Williams P, Hardman A (2002) Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum. FEMS Microbiol Lett 207:1–7CrossRefGoogle Scholar
  27. Polissi A, Goffin L, Georgopoulos C (1995) The Escherichia coli heat shock response and bacteriophage lambda development. FEMS Microbiol Rev 17:159–169Google Scholar
  28. Pribik R, Dragan AI, Zhang Y, Gaydos C, Geddes CD (2009) Metal-enhanced fluorescence (MEF): physical characterization of silver-island films and exploring sample geometries. J Phys Chem Lett 478:70–74CrossRefGoogle Scholar
  29. Ray K, Badugu R, Lakowicz JR (2006) Distance-dependent metal-enhanced fluorescence from Langmuir–Blodgett monolayers of alkyl-NBD derivatives on silver island films. Langmuir 22:8374–8378CrossRefGoogle Scholar
  30. Rodriguez-Mozaz S, Alda MJLd, Marco M-P, Barcelo D (2005) Biosensors for environmental monitoring: a global perspective. Talanta 65:291–297Google Scholar
  31. Sagi E, Hever N, Rosen R, Bartolome AJ, Premkumar JR, Ulber R, Lev O, Scheper T, Belkin S (2003) Fluorescence and bioluminescence reporter functions in genetically modified bacterial sensor strains. Sens Act B Chem 90:2–8CrossRefGoogle Scholar
  32. Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789CrossRefGoogle Scholar
  33. Spellberg B, Blaser M, Guidos RJ, Boucher HW, Bradley JS, Eisenstein BI, Gerding D, Lynfield R, Reller LB, Rex J, Schwartz D, Septimus E, Tenover FC, Gilbert DN (2011) Combating antimicrobial resistance: policy recommendations to save lives. Clin Infect Dis 5:397–428Google Scholar
  34. Steffensky M, Muhlenweg A, Wang ZX, Li SM, Heide L (2000) Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob Agents Chemother 44:1214–1222CrossRefGoogle Scholar
  35. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138CrossRefGoogle Scholar
  36. Troy T, Jekic-McMullen D, Sambucetti L, Rice B (2004) Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 3:9–23CrossRefGoogle Scholar
  37. Unge A, Tombolini R, Molbak L, Jansson JK (1999) Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl Environ Microbiol 65:813–821Google Scholar
  38. Weisenberg M, Zhang YX, Geddes CD (2010) Metal-enhanced chemiluminescence from chromium, copper, nickel, and zinc nanodeposits: Evidence for a second enhancement mechanism in metal-enhanced fluorescence. Appl Phys Lett 97:133103CrossRefGoogle Scholar
  39. Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938CrossRefGoogle Scholar
  40. Winson MK et al (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192CrossRefGoogle Scholar
  41. Yagur-Kroll S, Belkin S (2011) Upgrading bioluminescent bacterial bioreporter performance by splitting the lux operon. Anal Bioanal Chem 400:1071–1082CrossRefGoogle Scholar
  42. Zhang Y, Agreda P, Kelley S, Gaydos C, Geddes CD (2011) Development of a microwave-accelerated metal-enhanced fluorescence 40 s, <100 cfu/ml point of care assay for the detection of 00Chlamydia trachomatis. IEEE Trans Biomed Eng 58:781–784CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Karina Golberg
    • 1
  • Amit Elbaz
    • 1
  • Ronald McNeil
    • 4
  • Ariel Kushmaro
    • 1
    • 2
  • Chris D. Geddes
    • 4
  • Robert S. Marks
    • 1
    • 2
    • 3
    • 4
  1. 1.Avram and Stella Goldstein-Goren Department of Biotechnology EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.The Ilse Katz Center for Meso and Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-ShevaIsrael
  4. 4.The Institute of Fluorescence, University of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations