Molecular dynamics of coalescence and collisions of silver nanoparticles

  • Enrique Guevara-ChapaEmail author
  • Sergio Mejía-Rosales
Research Paper


We study how different relative orientations and impact velocity on the collision of two silver nanoparticles affect the first stages of the formation of a new, larger nanoparticle. In order to do this, we implemented a set of molecular dynamics simulations on the NVE ensemble on pairs of silver icosahedral nanoparticles at several relative orientations, that allowed us to follow the dynamics of the first nanoseconds of the coalescence processes. Using bond angle analysis, we found that the initial relative orientation of the twin planes has a critical role on the final stability of the resulting particle, and on the details of the dynamics itself. When the original particles have their closest twins aligned to each other, the formed nanoparticle will likely stabilize its structure onto a particle with a defined center and a low surface-to-volume ratio, while nanoparticles with misaligned twins will promote the formation of highly defective particles with a high inner energy.


Molecular dynamics Nanoparticles Silver Coalescence Embedded atom Modeling and simulations 



This work was supported by the Mexican Council for Science and Technology (CONACYT, Mexico), through the project CIAM 148967. Support from UANL, through the project PAICYT CE820-11 is also acknowledged.


  1. Ackland GJ, Jones AP (2006) Applications of local crystal structure measures in experiment and simulation. Phys Rev B 73:054104CrossRefGoogle Scholar
  2. Antúnez-García J, Mejía-Rosales S, Pérez-Tijerina E, Montejano-Carrizales JM, José-Yacamán M (2011) Coalescence and collisions of gold nanoparticles. Materials 4(2):368–379CrossRefGoogle Scholar
  3. Baletto F, Mottet C, Ferrando R (2001) Microscopic mechanisms of the growth of metastable silver icosahedra. Phys Rev B 63:155408CrossRefGoogle Scholar
  4. Cobley CM, Skrabalak SE, Campbell DJ, Xia Y (2009) Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4(2):171–179CrossRefGoogle Scholar
  5. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals cu, ag, au, ni, pd, pt, and their alloys. Phys Rev B 33:7983–7991CrossRefGoogle Scholar
  6. Gracia-Pinilla M, Ferrer D, Mejía-Rosales S, Pérez-Tijerina E (2009) Size-selected ag nanoparticles with five-fold symmetry. Nanoscale res lett 4(8):896–902CrossRefGoogle Scholar
  7. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124(35):10596–10604CrossRefGoogle Scholar
  8. Hawa T, Zachariah M (2005) Coalescence kinetics of bare and hydrogen-coated silicon nanoparticles: a molecular dynamics study. Phys Rev B 71(16):1–12CrossRefGoogle Scholar
  9. Hawa T, Zachariah M (2006) Coalescence kinetics of unequal sized nanoparticles. J Aerosol Sci 37(1):1–15CrossRefGoogle Scholar
  10. Khanal S, Bhattarai N, Velázquez-Salazar JJ, Bahena D, Soldano G, Ponce A, Mariscal MM, Mejía-Rosales S, José-Yacamán M (2013) Trimetallic nanostructures: the case of agpd-pt multiply twinned nanoparticles. Nanoscale 5(24):12456–12463CrossRefGoogle Scholar
  11. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y-S, Jeong DH, Cho M-H (2007) Antimicrobial effects of silver nanoparticles. Nanomed: Nanotechnol Biol Med 3(1):95–101CrossRefGoogle Scholar
  12. Mariscal MM, Dassie SA, Leiva EPM (2005) Collision as a way of forming bimetallic nanoclusters of various structures and chemical compositions. J Chem Phys 123(18):184505CrossRefGoogle Scholar
  13. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353CrossRefGoogle Scholar
  14. Perez-Tijerina E, Mejia-Rosales S, Inada H, Jose-Yacaman M (2010) Effect of temperature on AuPd nanoparticles produced by inert gas condensation. J Phys Chem C 114(15):6999–7003CrossRefGoogle Scholar
  15. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83CrossRefGoogle Scholar
  16. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv colloid interface sci 145(1–2):83–96CrossRefGoogle Scholar
  17. Silva LD, Machado S, Ferreira C (2011) Thin films of kanthal and aluminum for electromagnetic wave absorption. J Nano Res 14:155–163Google Scholar
  18. Van McFarland AD, Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3(8):1057–1062CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Facultad de Ciencias Físico MatemáticasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Center for Innovation, Research and Development in Engineering and Technology (CIIDIT), and CICFIM-Facultad de Ciencias Físico MatemáticasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico

Personalised recommendations