Advertisement

The effect of synthesis technique on thermoelectric properties of nanocrystalline NaCo2O4 ceramics

  • Mehmet Okan Erdal
  • Mustafa Koyuncu
  • İbrahim Uslu
Research Paper

Abstract

Sodium cobalt oxide (NaCo2O4) nanocrystalline thermoelectric ceramic powders were synthesized using conventional polymerized complex sol–gel and electrospinning techniques and then consolidated into bulk ceramics. We have investigated the differences in the microstructure and thermoelectric properties of the samples prepared using electrospinning and sol–gel methods. The crystal structures of the powders and nanofibers were characterized using X-ray diffraction and scanning electron microscopy before and after calcination at different temperatures. Nanofibers prepared by electrospinning have a diameter of approximately 300 nm, while the diameter of the grains of sol–gel powders ranges from 1 to 5 µm. Thermoelectric properties of the bulk ceramics were measured by physical properties measurement system in the temperature range of 15–300 K. The calculated values of dimensionless figure of merit at 300 K are 6 × 10−7 and 4 × 10−5 for sintered powders from sol–gel and nanofibers, respectively. While electrospinning production technique increase thermoelectric power approximately 15 % and it fold electrical conductivity average 20 times, it decreased thermal conductivity by 90 %.

Keywords

Thermoelectric properties Sodium cobaltine Nanocomposite Electrospinning Sol-gel Energy conversion 

Notes

Acknowledgments

This study was supported by Scientific Research Project Coordination Unit of Selcuk University.

References

  1. Dresselhaus MS et al (2001) Investigation of low-dimensional thermoelectric. In: Proceedings of the nonlithographic and lithographic methods for nanofabrication symposium S. Smith Ed, Technomic Publishing Co, LancasterGoogle Scholar
  2. Chen ZG, Han G, Yang L, Cheng L, Zou J (2012) Nanostructured thermoelectric materials: current research and future challenge. Prog Nat Sci: Mater Int 22(6):535–549. doi: 10.1016/j.pnsc.2012.11.011 CrossRefGoogle Scholar
  3. Cheng J, Sui Y, Fu H, Lu Z, Wei B, Qian Z, Miao J, Liu Z, Huang X, Zhu R, Wang X, Su W (2006) Fabrication and thermoelectric properties of highly textured NaCo2O4 ceramic. J Alloy Compd 407(2006):299–303. doi: 10.1016/j.jallcom.2005.06.020 CrossRefGoogle Scholar
  4. Dmitriev AV, Zvyagin IP (2010) Current trends in the physics of thermoelectric materials. Phys Uspekhi 53(8):789–803. doi: 10.3367/UFNe.0180.201008b.0821 CrossRefGoogle Scholar
  5. Dong Z, Kennedy SJ, Wu Y (2011) Electrospinning materials for energy-related applications and devices. J Power Sources 196:4886–4904. doi: 10.1016/j.jpowsour.2011.01.090 CrossRefGoogle Scholar
  6. Hu X, Li G, Yu JC (2010) Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26(5):3031–3039. doi: 10.1021/la902142b CrossRefGoogle Scholar
  7. Ito M, Furumoto D (2008) Effects of noble metal addition on microstructure and thermoelectric properties of NaxCo2O4. J Alloy Compd 450:494–498. doi: 10.1016/j.jallcom.2006.11.032 CrossRefGoogle Scholar
  8. Jood P, Peleckis G, Wang XL, Duo SX, Yamauchi H, Karppien M (2010) Phase formation and magneto transport of alkali metal doped Na0.75CoO2 thermoelectric oxide. J Appl Phys 107:09D716. doi: 10.1063/1.3365491 CrossRefGoogle Scholar
  9. Kamarudin MA et al (2013) A review on the fabrication of polymer-based thermoelectric materials and fabrication methods. Sci World J 2013(713640):1–17. doi: 10.1155/2013/713640 CrossRefGoogle Scholar
  10. Kishan H, Awana VPS, Ansari MA, Gupta A, Saxena RB, Ganesan V, Narlikar AV, Cardoso CA, Nirmala R, Buddhikot D, Malik SK (2005) Resistivity and thermoelectric power of NaxCo2O4 (x = 1.0, 0.7, and 0.6) system. J Appl Phys 97:10A904. doi: 10.1063/1.1847852 CrossRefGoogle Scholar
  11. Lan Y, Minnich AJ, Chen G, Ren Z (2010) Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv Funct Mater 20:357–376. doi: 10.1002/adfm.200901512 CrossRefGoogle Scholar
  12. Li N, Jiang Y, Li G, Wang C, Shi J, Yu D (2009) Self-ignition route to Ag-doped Na1,7Co2O4 and its thermoelectric properties. J Alloy Compd 467:444–449. doi: 10.1016/j.jallcom.2007.12.012 CrossRefGoogle Scholar
  13. Li L, Chen Z, Zhou M, Huang R (2011) Developments in semiconductor thermoelectric materials. Front Energy 5(2):125–136. doi: 10.1007/s11708-011-0150-1 CrossRefGoogle Scholar
  14. Ma F, Ou Y, Yang Y, Liu Y, Xie S, Li JF, Cao G, Proksch R, Li J (2010) Nanocrysytalline structure and thermoelectric properties of electrospun NaCo2O4 nanofibers. J Phys Chem C 114:22038–22043. doi: 10.1021/jp107488k CrossRefGoogle Scholar
  15. Maensiri S, Nuansing W (2006) Thermoelectric oxide NaCo2O4 nanofibers fabricated by electrospinning. Mater Chem Phys 99:104–108. doi: 10.1016/j.matchemphys.2005.10.004 CrossRefGoogle Scholar
  16. Matsubara I, Zhou Y, Takeuchi T, Funahashi R, Shikano M, Murayama N, Shin W, Izu N (2003) Thermoelectric properties of spark-plazma-sintered Na1+xCo2O4 ceramics. J Ceram Soc Jpn 111(4):238–241. doi: 10.2109/jcersj.111.238 CrossRefGoogle Scholar
  17. Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:466–479. doi: 10.1039/B822664B CrossRefGoogle Scholar
  18. Nakatsugava H, Nagasawa K (2004) Evidence for the two-dimensional hybridization in Na0.79CoO2 and Na0.84CoO2. J Solid State Chem 177(4–5):1137–1145. doi: 10.1016/j.jssc.2003.10.035 CrossRefGoogle Scholar
  19. Park K, Lee JH (2008) Enhanced thermoelectric properties of NaCo2O4 by adding ZnO. Mater Lett 62:2366–2368. doi: 10.1016/j.matlet2007.11.090 CrossRefGoogle Scholar
  20. Peleckis G, Motohashi T, Karppinen M, Yamauchi H (2003) Enhanced thermoelectric properties of NaxCoO2 whisker crystals. Appl Phys Lett 83(26):5416–5418. doi: 10.1063/1.1634371 CrossRefGoogle Scholar
  21. Seetawan T, Amornkitbamrung V, Burinprakhon T, Maensiri S, Tongbi P, Kurosaki K, Muta H, Uno M, Yamanaka S (2006) Effect of sintering temperature on the thermoelectric properties of NaxCo2O4. J Alloy Compd 416(1–2):291–295. doi: 10.1016/j.jallcom.2005.08.035 CrossRefGoogle Scholar
  22. Sekak KA, Lowe A (2011) Structural and thermal characterization of calcium cobaltite electrospun nanostructured fibers. J Am Ceram Soc 94(2):611–619. doi: 10.1111/j.1551-2916.2010.04106.x CrossRefGoogle Scholar
  23. Szczech JR, Higgins JM, Jin S (2011) Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J Mater Chem 21:4037–4055. doi: 10.1039/C0JM02755C CrossRefGoogle Scholar
  24. Terasaki I, Sasago Y, Uchinokura K (1997) Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 56:R12685-R12687. doi: 10.1103/PhysRevB.56.R12685
  25. Tervo J, et al (2009) State-of-the-art of thermoelectric materials processing, properties and applications. VTT Working Papers 124, VTT Technical Research Centre of Finland. ISBN:978-951-38-7184-0Google Scholar
  26. Yakabe H, Kikuchi K, Terasaki I, Sasago Y, Uchinokura K (1997) Thermoelectric properties of transition metal oxide NaCo2O4 system. In: 16th International conference on thermoelectrics. doi: 10.1109/ICT.1997.667584.
  27. Yin T, Liu D, Ou Y, Li J (2010) Nanocrystalline thermoelectric Ca3Co4O9 ceramics by sol–gel based electrospinning and spark plasma sintering. J Phys Chem C 114:10061–10065. doi: 10.1021/jp1024872 CrossRefGoogle Scholar
  28. Zhou M, Li JF, Kita T (2008) Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance. J Am Chem Soc 130:4527–4532. doi: 10.1021/ja7110652 CrossRefGoogle Scholar
  29. Zhu TJ, Cao YQ, Zhang Q, Zhao XB (2009) Bulk nanostructured thermoelectric materials: preparation, structure and properties. J Electron Mater 39(9):1990–1995. doi: 10.1007/s11664-009-1037-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mehmet Okan Erdal
    • 1
  • Mustafa Koyuncu
    • 2
  • İbrahim Uslu
    • 3
  1. 1.Department of Physics, Institute of Science and TechnologySelcuk UniversityKonyaTurkey
  2. 2.Department of Physics, Faculty of ScienceSelcuk UniversityKonyaTurkey
  3. 3.Department of Chemistry, Faculty of EducationGazi UniversityAnkaraTurkey

Personalised recommendations