Gold nanocage coupled single crystal TiO2 nanostructures for near-infrared water photolysis

  • Tandeep S. Chadha
  • Jinho Park
  • Woo Jin An
  • Pratim Biswas
Research Paper


Gold (Au) nanocages were deposited on single crystal TiO2 columnar thin films and their effect on the photoelectrochemical performance for water oxidation was studied. The performance was compared to spherical Au nanoparticles of similar size (30 nm) deposited on the columns to investigate the shape effect. The performance of spherical Au nanoparticles with a 5 nm diameter was also measured as an indicator of the size effect. All Au-TiO2 thin films exhibited enhanced photocurrents compared to the pristine TiO2 thin film under visible and near-infrared light irradiation. In particular, the nanocage Au deposited TiO2 thin film exhibited the maximum photocurrent, approximately 8 times higher than that by the pristine TiO2 film. Photocurrent action spectra of the thin films confirmed the role of surface plasmon resonance in the performance enhancement caused by hot electron injection into the TiO2 conduction band. Light absorption was controlled in the 520–810 nm region by change of size and shape of the Au nanoparticles. The absorption range of the nanocages in the NIR region with high photocurrent makes them promising candidates for solar water-splitting.


Aerosol chemical vapor deposition Hot electron injection Surface plasmon resonance Visible and near infrared photocatalysis Water-splitting 



This work is supported in part under the US-India Partnership to Advance Clean Energy-Research (PACE-R) for the Solar Energy Research Institute for India and the United States (SERIIUS), funded jointly by the U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program, under Subcontract DE-AC36-08GO28308 to the National Renewable Energy Laboratory, Golden, Colorado) and the Government of India, through the Department of Science and Technology under Subcontract IUSSTF/JCERDC-SERIIUS/2012. Electron microscopy was performed at the Nano Research Facility (NRF) at Washington University in St. Louis, a member of the National Nanotechnology Infrastructure Network (NNIN), supported by the National Science Foundation under Grant No. ECS-0335765.


  1. Allam NK, Alamgir F et al (2010) Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti−Nb−Zr−O mixed oxide nanotube arrays. ACS Nano 4(10):5819–5826CrossRefGoogle Scholar
  2. An W-J, Thimsen E et al (2010) Aerosol-chemical vapor deposition method for synthesis of nanostructured metal oxide thin films with controlled morphology. J Phys Chem Lett 1(1):249–253CrossRefGoogle Scholar
  3. Asahi R, Morikawa T et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271CrossRefGoogle Scholar
  4. Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28(3):141–145CrossRefGoogle Scholar
  5. Butler MA, Abramovich M et al (1981) Subband gap response of TiO2 and SrTiO3 photoelectrodes. J Electrochem Soc 128(1):200–204CrossRefGoogle Scholar
  6. Chandrasekharan N, Kamat PV (2000) Improving the photoelectrochemical performance of nanostructured TiO(2) films by adsorption of gold nanoparticles. J Phys Chem B 104(46):10851–10857CrossRefGoogle Scholar
  7. Chen J, Saeki F et al (2005a) Gold Nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5(3):473–477CrossRefGoogle Scholar
  8. Chen J, Wiley B et al (2005b) Gold nanocages: engineering their structure for biomedical applications. Adv Mater 17(18):2255–2261CrossRefGoogle Scholar
  9. Chen J, Wang D et al (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322CrossRefGoogle Scholar
  10. Christopher P, Ingram DB et al (2010) Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: photochemistry mediated by Ag surface plasmons. J Phys Chem C 114(19):9173–9177CrossRefGoogle Scholar
  11. Dang X, Zhang X et al (2014) Construction of Au@TiO2/graphene nanocomposites with plasmonic effect and super adsorption ability for enhanced visible-light-driven photocatalytic organic pollutant degradation. J Nanopart Res 16(2):1–8CrossRefGoogle Scholar
  12. Du L, Furube A et al (2009) Plasmon-induced charge separation and recombination dynamics in gold—TiO2 nanoparticle systems: dependence on TiO2 particle size. J Phys Chem C 113(16):6454–6462CrossRefGoogle Scholar
  13. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38CrossRefGoogle Scholar
  14. Furube A, Du L et al (2007) Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 129(48):14852–14853CrossRefGoogle Scholar
  15. Heilweil E, Hochstrasser R (1985) Nonlinear spectroscopy and picosecond transient grating study of colloidal gold. J Chem Phys 82:4762CrossRefGoogle Scholar
  16. Hong S, Shuford KL et al (2011) Shape transformation of gold nanoplates and their surface plasmon characterization: triangular to hexagonal nanoplates. Chem Mater 23(8):2011–2013CrossRefGoogle Scholar
  17. Jakob M, Levanon H et al (2003) Charge distribution between UV-Irradiated TiO2 and gold nanoparticles: determination of shift in the fermi level. Nano Lett 3(3):353–358CrossRefGoogle Scholar
  18. Kim DY, Li W et al (2011) Seed-mediated synthesis of gold octahedra in high purity and with well-controlled sizes and optical properties. Chem A Eur J 17(17):4759–4764CrossRefGoogle Scholar
  19. Li L, Salvador PA et al (2014) Photocatalysts with internal electric fields. Nanoscale 6(1):24–42CrossRefGoogle Scholar
  20. Link S, Burda C et al (2000) Femtosecond transient-absorption dynamics of colloidal gold nanorods: shape independence of the electron-phonon relaxation time. Phys Rev B 61(9):6086CrossRefGoogle Scholar
  21. Mahmoud MA, El-Sayed MA (2010) Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors. J Am Chem Soc 132(36):12704–12710CrossRefGoogle Scholar
  22. Mahmoud MA, Snyder B et al (2010) Surface plasmon fields and coupling in the hollow gold nanoparticles and surface-enhanced Raman spectroscopy. Theory and experiment†. J Phys Chem C 114(16):7436–7443CrossRefGoogle Scholar
  23. Martin ST, Morrison CL et al (1994) Photochemical mechanism of size-quantized vanadium-doped TiO2 particles. J Phys Chem 98(51):13695–13704CrossRefGoogle Scholar
  24. Mattsson A, Leideborg M et al (2005) Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films. J Phys Chem B 110(3):1210–1220CrossRefGoogle Scholar
  25. Modesto-Lopez LB, Thimsen EJ et al (2010) Electrospray-assisted characterization and deposition of chlorosomes to fabricate a biomimetic light-harvesting device. Energy Environ Sci 3(2):216–222CrossRefGoogle Scholar
  26. Ni M, Leung MKH et al (2007) A review and recent developments in photocatalytic water-splitting using for hydrogen production. Renew Sustain Energy Rev 11(3):401–425CrossRefGoogle Scholar
  27. Nishijima Y, Ueno K et al (2012) Near-infrared plasmon-assisted water oxidation. J Phys Chem Lett 3(10):1248–1252CrossRefGoogle Scholar
  28. Oliva FY, Avalle LB et al (2002) Photoelectrochemical characterization of nanocrystalline TiO2 films on titanium substrates. J Photochem Photobiol A 146(3):175–188CrossRefGoogle Scholar
  29. Oregan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740CrossRefGoogle Scholar
  30. Ren WJ, Ai ZH et al (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B 69(3–4):138–144CrossRefGoogle Scholar
  31. Sahu M, Biswas P (2011) Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor. Nanoscale Res Lett 6(1):1–14Google Scholar
  32. Sandu T (2012) Shape effects on localized surface plasmon resonances in metallic nanoparticles. J Nanopart Res 14(6):1–10CrossRefGoogle Scholar
  33. Skrabalak SE, Au L et al (2007) Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc 2(9):2182–2190CrossRefGoogle Scholar
  34. Subramanian V, Wolf EE et al (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J Am Chem Soc 126(15):4943–4950CrossRefGoogle Scholar
  35. Thimsen E, Rastgar N et al (2008) Nanostructured TiO2 films with controlled morphology synthesized in a single step process: performance of dye-sensitized solar cells and photo watersplitting. J Phys Chem C 112(11):4134–4140CrossRefGoogle Scholar
  36. Tian Y, Tatsuma T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127(20):7632–7637CrossRefGoogle Scholar
  37. Umebayashi T, Yamaki T et al (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81(3):454–456CrossRefGoogle Scholar
  38. Wang P, Huang B et al (2012a) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14(28):9813–9825CrossRefGoogle Scholar
  39. Wang W-N, An W-J et al (2012b) Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J Am Chem Soc 134(27):11276–11281CrossRefGoogle Scholar
  40. Wang H, Zhang L et al (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43(15):5234–5244CrossRefGoogle Scholar
  41. Warren SC, Thimsen E (2012) Plasmonic solar water splitting. Energy Environ Sci 5(1):5133–5146CrossRefGoogle Scholar
  42. Wood A, Giersig M et al (2001) Fermi level equilibration in quantum Dot—Metal Nanojunctions†. J Phys Chem B 105(37):8810–8815CrossRefGoogle Scholar
  43. Yavuz MS, Cheng Y et al (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8(12):935–939CrossRefGoogle Scholar
  44. Zhang JZ, Noguez C (2008) Plasmonic optical properties and applications of metal nanostructures. Plasmonics 3(4):127–150CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Tandeep S. Chadha
    • 1
  • Jinho Park
    • 1
    • 2
    • 3
  • Woo Jin An
    • 1
    • 4
  • Pratim Biswas
    • 1
  1. 1.Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisUSA
  2. 2.Nano Research FacilityWashington University in St. LouisSt. LouisUSA
  3. 3.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  4. 4.SunEdisonPasadenaUSA

Personalised recommendations