Silica nanoparticles mediated neuronal cell death in corpus striatum of rat brain: implication of mitochondrial, endoplasmic reticulum and oxidative stress

  • Arshiya Parveen
  • Syed Husain Mustafa Rizvi
  • Farzana Mahdi
  • Sandeep Tripathi
  • Iqbal Ahmad
  • Rajendra K. Shukla
  • Vinay K. Khanna
  • Ranjana Singh
  • Devendra K. Patel
  • Abbas Ali MahdiEmail author
Research Paper


Extensive uses of silica nanoparticles (SiNPs) in biomedical and industrial fields have increased the risk of exposure, resulting concerns about their safety. We focussed on some of the safety aspects by studying neurobehavioural impairment, oxidative stress (OS), neurochemical and ultrastructural changes in corpus striatum (CS) of male Wistar rats exposed to 80-nm SiNPs. Moreover, its role in inducing mitochondrial and endoplasmic reticulum (ER) stress-mediated neuronal apoptosis was also investigated. The results demonstrated impairment in neurobehavioural indices, and a significant increase in lipid peroxide levels (LPO), hydrogen peroxide (H2O2), superoxide (O2 -) and protein carbonyl content, whereas there was a significant decrease in the activities of the enzymes, manganese superoxide dismutase (Mn SOD), glutathione peroxidase (GPx), catalase (CAT) and reduced glutathione (GSH) content, suggesting impaired antioxidant defence system. Protein (cytochrome c, Bcl-2, Bax, p53, caspase-3, caspase 12 and CHOP/Gadd153) and mRNA (Bcl-2, Bax, p53 and CHOP/Gadd153, cytochrome c) expression studies of mitochondrial and ER stress-related apoptotic factors suggested that both the cell organelles were involved in OS-mediated apoptosis in treated rat brain CS. Moreover, electron microscopic studies clearly showed mitochondrial and ER dysfunction. In conclusion, the result of the study suggested that subchronic SiNPs’ exposure has the potential to alter the behavioural activity and also to bring about changes in biochemical, neurochemical and ultrastructural profiles in CS region of rat brain. Furthermore, we also report SiNPs-induced apoptosis in CS, through mitochondrial and ER stress-mediated signalling.


Silica nanoparticles Corpus striatum Neuronal apoptosis Mitochondrial stress Endoplasmic reticulum stress Oxidative stress 



We gratefully acknowledge the financial support received from Council of Science & Technology U. P. for carrying out the study.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aebi H (1984) Catalase in vitro. In: Packer L (ed) Methods in enzymology, vol 105. Academic Press, New York, pp 121–126Google Scholar
  2. Barbara SB, Earl RS (1997) Protein oxidation in aging, disease and oxidative stress. J Biol Chem 272:20313–20316CrossRefGoogle Scholar
  3. Barone MV, Crozat A, Tabaee A, Philipson L, Ron D (1994) CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev 8:453–464CrossRefGoogle Scholar
  4. Bartczak D, Sanchez-Elsner T, Louafi F, Millar TM, Kanaras AG (2011) Receptor-mediated interactions between colloidal gold nanoparticles and human umbilical vein endothelial cells. Small 7:388–394CrossRefGoogle Scholar
  5. Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, Bergey EJ, Prasad PN, Stachowiak MK (2005) Organically Modified Silica Nanoparticles: a Nonviral Vector for In Vivo Gene Delivery and Expression in the Brain. Proc Natl Acad Sci USA 32:11539–11544CrossRefGoogle Scholar
  6. Bottini M, D’Annibale F, Magrini A, Cerignoli F, Arimura Y, Dawson MI, Bergamaschi E, Rosato N, Bergamaschi A, Mustelin T (2007) Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes. Int J Nanomed 2:227–233Google Scholar
  7. Brouwer D (2010) Exposure to manufactured nanoparticles in different workplaces. Toxicology 269:120–127CrossRefGoogle Scholar
  8. Bugiani O, Perdelli F, Salvarani S, Leonardi A, Mancardi GL (1980) Loss of striatal neurons in Parkinson’s disease: a cytometric study. Eur Neurol 19:339–344CrossRefGoogle Scholar
  9. Chen G, Ma C, Bower KA, Shi X, Ke Z, Luo J (2008) Ethanol promotes endoplasmic reticulum stress-induced neuronal death: involvement of oxidative stress. J Neurosci Res 86:937–946CrossRefGoogle Scholar
  10. Christen V V, Capelle M, Fent K (2013) Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish. Toxicol Appl Pharmacol 272:519–528CrossRefGoogle Scholar
  11. Circu ML, Aw TY (2010) Reacting oxygen species, cellular redox system and apoptosis. Free Radical Biol Med 6:749–762CrossRefGoogle Scholar
  12. Deniaud A, Sharaf el dein O, Maillier E, Poncet D, Kroemer G, Lemaire C, Brenner C (2008) Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27:285–299CrossRefGoogle Scholar
  13. Doyle KM, Kennedy D, Gorman AM, Gupta S, Healy SJ, Samali A (2011) Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J Cell Mol Med 15:2025–2039CrossRefGoogle Scholar
  14. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114:1172–1178CrossRefGoogle Scholar
  15. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Method Enzymol 105:114–121CrossRefGoogle Scholar
  16. Galehdar Z, Swan P, Fuerth B, Callaghan SM, Park DS, Cregan SP (2010) Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated induction of the Bcl-2 homology 3-only member PUMA. J Neurosci 30:16938–16948CrossRefGoogle Scholar
  17. Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. The disposition of 3H-norepinephrine 3H-dopamine and 3H-dopa in various regions of the brain. J Neurochem 13:655–659CrossRefGoogle Scholar
  18. Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14:633–643Google Scholar
  19. Hasan M, Haider SS (1989) Acetyl homocysteine thiolactone protect against some neurotoxic effects of thallium. Neurotoxicology 10:257–262Google Scholar
  20. Hu R, Zheng L, Zhang T, Gao G, Cui Y, Cheng Z, Cheng J, Hong M, Tang M, Hong F (2011) Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. J Hazard Mater 191:32–40CrossRefGoogle Scholar
  21. Jiang J, Oberdorster G, Bisw P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRefGoogle Scholar
  22. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132Google Scholar
  23. Khanna VK, Husain R, Seth PK (1994) Effect of protein malnutrition on the neurobehavioral toxicity of styrene in young rats. J Appl Toxicol 14:351–356CrossRefGoogle Scholar
  24. Kim C, Speisky MB, Klarevla SN (1987) Rapid and sensitive method for measuring norepinephrine, dopamine, 5HT and their major metabolites in rat brain by high performance liquid chromatography. J Chromatogr 386:25–35CrossRefGoogle Scholar
  25. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163CrossRefGoogle Scholar
  26. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478CrossRefGoogle Scholar
  27. Li G, Scull C, Ozcan L, Tabas I (2010) NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. J Cell Biol 191:1113–1125CrossRefGoogle Scholar
  28. Liao CM, Chiang YH, Chio CP (2009) Assessing the airborne titanium dioxide nanoparticles related exposure hazard at workplace. J Hazard Mater 162:57–65CrossRefGoogle Scholar
  29. Liu X, Sun J (2010) endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kappaB pathways. Biomaterials 32:8198–8209CrossRefGoogle Scholar
  30. Liu S, Xu L, Zhang T, Ren G, Yang Z (2010) Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology 267:172–177CrossRefGoogle Scholar
  31. Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Target 12:635–641CrossRefGoogle Scholar
  32. Lowry OH, Rosenbrough NJ, Farr AL Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 192:265–275Google Scholar
  33. Matsumoto M, Minami M, Takeda K, Sakao Y, Akira S (1996) Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. FEBS Lett 395:143–147CrossRefGoogle Scholar
  34. Meiser J, Weindl D, Hiller K (2013) Complexity of dopamine metabolism. Cell Commun Signal 11:34CrossRefGoogle Scholar
  35. Momoi T (2004) Caspases involved in ER stress-mediated cell death. J Chem Neuroanat 28:101–105CrossRefGoogle Scholar
  36. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253CrossRefGoogle Scholar
  37. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403:98–103CrossRefGoogle Scholar
  38. Napolitano A, Manini P, D’Ischia M (2011) Oxidation chemistry of catecholamines and neuronal degeneration: an update. Curr Med Chem 18:1832–1845CrossRefGoogle Scholar
  39. Nourooz-Zadeh J, Tajaddini-Sarmadi T, Wolff SP (1994) Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem 220:403–409CrossRefGoogle Scholar
  40. Nozaki S, Sledge GW Jr, Nakshatri H (2001) Repression of GADD153/CHOP by NF-kappaB: a possible cellular defense against endoplasmic reticulum stress-induced cell death. Oncogene 20:2178–2185CrossRefGoogle Scholar
  41. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefGoogle Scholar
  42. Oliveira CP, Lopasso FP, Laurindo FR (2001) Protection against liver ischemia–reperfusion injury in rats by silymarin or verapamil. Transplant. Proc 33:3010–3014CrossRefGoogle Scholar
  43. Oszlanczi G, Papp A, Szabo A (2011) Nervous system effects in rats on subacute exposure by lead-containing nanoparticles via the airways. Inhal Toxicol 23:173–181CrossRefGoogle Scholar
  44. Parveen A, Rizvi SHM, Gupta A, Singh R, Ahmad I, Mahdi F, Mahdi AA, Singh R, Ahmad I, Mahdi F, Mahdi AA (2012) NMR-based metabonomics study of sub-acute hepatotoxicity induced by silica nanoparticles in rats after intranasal exposure. NMR Cell Mol Biol 58(Supp):196–203Google Scholar
  45. Pitcher TL, Melzer TR, Macaskill MR, Graham CF, Livingston L, Keenan RJ, Watts R, Dalrymple-Alford JC, Anderson TJ (2012) Reduced striatal volumes in Parkinson’s disease: a magnetic resonance imaging study. Transl Neurodegener. 21:17CrossRefGoogle Scholar
  46. Rizvi SHM, Parveen A, Verma AK, Ahmad I, Arshad M, Mahdi AA (2014) Aluminium induced endoplasmic reticulum stress mediated cell death in SHSY5Y neuroblastoma cell line is independent of p53. PLoS ONE 9(5):e98409CrossRefGoogle Scholar
  47. Sanges D, Marigo V (2006) Cross-talk between two apoptotic pathways activated by endoplasmic reticulum stress: differential contribution of caspase-12 and AIF. Apoptosis 11:1629–1641CrossRefGoogle Scholar
  48. Shafer TJ, Meyer DA, Crofton KM (2005) Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ Health Perspect 113:123–136CrossRefGoogle Scholar
  49. Slowing II, Trewyn BG, Lin VSY (2007) Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. J Am Chem Soc 129:8845–8849CrossRefGoogle Scholar
  50. Sterling NW, Du G, Lewis MM, Dimaio C, Kong L, Eslinger PJ, Styner M, Huang X (2013) Striatal shape in Parkinson’s disease. Neurobiol Aging 34:2510–2516CrossRefGoogle Scholar
  51. Sulzer D, Bogulavsky J, Larsen KE, Behr G, Karatekin E, Kleinman MH, Turro N, Krantz D, Edwards RH, Greene LA, Zecca L (2000) Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci USA 97:11869–11874CrossRefGoogle Scholar
  52. Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109:547–551CrossRefGoogle Scholar
  53. Tang DG, Li L, Zhu Z, Joshi B (1998) Apoptosis in the absence of cytochrome c accumulation in the cytosol. Biochem. Biophys Res 242:380–384CrossRefGoogle Scholar
  54. Vacha R, Martinez-Veracoechea FJ, Frenkel D (2012) Intracellular release of endocytosed nanoparticles upon a change of ligand–receptor interaction. ACS Nano 6:10598–10605Google Scholar
  55. Walter L, Hajnoczky G (2005) Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr 37:191–206CrossRefGoogle Scholar
  56. Wang J, Liu Y, Jiao F, Lao F, Li W, Gu Y, Li Y, Ge C, Zhou G, Li B, Zhao Y, Chai Z, Chen C (2008) Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 254:82–90CrossRefGoogle Scholar
  57. Wang B, Feng WY, Zhu MT, Wang Y, Wang M, Gu Y, Ouyang H, Wang H, Li M, Zhao Y, Chai Z, Wang H (2009a) Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice. J Nanopart Res 11:41–53CrossRefGoogle Scholar
  58. Wang J, Rahman MF, Duhart HM, Newport GD, Patterson TA, Murdock RC, Hussain SM, Schlager JJ, Ali SF (2009b) Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles. Neurotoxicology 30:926–933CrossRefGoogle Scholar
  59. Win Shwe TT, Yamamoto S, Ahmed S, Kakeyama M, Kobayashi T, Fujimaki H (2006) Brain cytokine and chemokine mRNA expression in mice induced by intranasal instillation with ultrafine carbon black. Toxicol Lett 163:153–160CrossRefGoogle Scholar
  60. Wu HC, Yang CY, Hung DZ, Su CC, Chen KL, Yen CC, Ho TJ, Su YC, Huang CF, Chen CH, Tasi LM, Chen YW (2011a) Nickel (II) induced JNK activation regulated mitochondria dependent apoptosis pathway leading to cultured rat pancreatic β-cell death. Toxicology 289:103–111CrossRefGoogle Scholar
  61. Wu J, Wang C, Sun J, Xue Y (2011b) Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano 5:4476–4489CrossRefGoogle Scholar
  62. Yadav RS, Sankhwar ML, Shukla Rk, Chandra R, Pant AB, Islam F, Khanna VK (2009) Attenuation of arsenic neurotoxicity by curcumin in rats. Toxicol Appl Pharmacol 240:367–376CrossRefGoogle Scholar
  63. Yoshida H (2007) ER stress and diseases. FEBS J 274:630–658CrossRefGoogle Scholar
  64. Zhang R, Piao JM, Kim KC, Kim AD, Choi JY, Choi J, Hyun JW (2012) Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis. Int J Biochem Cell Biol 44:224–232CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Arshiya Parveen
    • 1
  • Syed Husain Mustafa Rizvi
    • 1
  • Farzana Mahdi
    • 2
  • Sandeep Tripathi
    • 3
  • Iqbal Ahmad
    • 4
  • Rajendra K. Shukla
    • 5
  • Vinay K. Khanna
    • 5
  • Ranjana Singh
    • 1
  • Devendra K. Patel
    • 6
  • Abbas Ali Mahdi
    • 1
    Email author
  1. 1.Department of BiochemistryKing George’s Medical UniversityLucknowIndia
  2. 2.Department of BiochemistryEra’s Lucknow Medical College & HospitalLucknowIndia
  3. 3.Department of BiotechnologyInstitute of Engineering and TechnologyJaipurIndia
  4. 4.Fibre ToxicologyCSIR-Indian Institute of Toxicology ResearchLucknowIndia
  5. 5.Developmental ToxicologyCSIR-Indian Institute of Toxicology ResearchLucknowIndia
  6. 6.Analytical Chemistry DivisionCSIR-Indian Institute of Toxicology ResearchLucknowIndia

Personalised recommendations