NMR relaxometric properties and cytotoxicity of Gd2O3 nanoparticle suspensions in an organic liquid

  • Branka Babić-Stojić
  • Vukoman Jokanović
  • Dušan Milivojević
  • Miroslav Požek
  • Zvonko Jagličić
  • Darko Makovec
  • Katarina Arsikin
  • Verica Paunović
Research Paper


Gd2O3 nanoparticles and their agglomerates from approximately 10 to 80 nm in size suspended in an organic liquid were synthesized via polyol route. The reaction between diethylene glycol and added acetic acid, which occurred simultaneously with the synthesis of Gd2O3 nanoparticles, was catalyzed by sodium bisulfate to transform as much as possible diethylene glycol in corresponding ester at the end of complete reaction. The produced nanosized material of gadolinium oxide was investigated by TEM, DLS, FTIR spectroscopy, and NMR relaxometry. Biological evaluation of this material was done by MTT and crystal violet assays to determine the cell viability. Longitudinal and transverse relaxivities of water-diluted Gd2O3 nanoparticle suspensions estimated to be r 1 = 13.6 and r 2 = 14.7 s−1 mM−1 are about three times higher compared to the relaxivities obtained for standard contrast agent Gd-DTPA (Magnevist). Good MRI signal intensities of the water-diluted Gd2O3 nanoparticle suspensions were recorded in the Gd concentration range 0.2–0.3 mM for which the suspensions were not toxic exhibiting simultaneously higher signal intensities than those for Magnevist in the Gd concentration range 0.4–1 mM for which this standard contrast agent was not toxic. These properties make the produced Gd2O3 nanoparticle material promising for potential application as MRI contrast agent.


Gadolinium oxide Nanoparticles Relaxivity Magnetic resonance imaging Contrast agents Toxicity Environmental and health effects 



Financial support for this study was granted by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Projects Nos. 172026 and 41025. The authors would like to thank Mr Lazar Lazić and PANACEA Polyclinic in Belgrade for MR imaging experiments on a 1.5 T Siemens scanner.


  1. Abrikossova N, Skoglund C, Ahrén M, Bengtsson TB, Uvdal K (2012) Effect of gadolinium oxide nanoparticles on the oxidative burst from human neutrophil granulocytes. Nanotechnology 23(27):27510CrossRefGoogle Scholar
  2. Ahrén M, Selegård L, Klasson A, Söderlind F, Abrikossova N, Skoglund C, Bengtsson T, Engström M, Käll P-O, Uvdal K (2010) Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. Langmuir 26(8):5753–5762CrossRefGoogle Scholar
  3. Ahrén M, Selegård L, Söderlind F, Linares M, Kauczor J, Norman P, Käll P-O, Uvdal K (2012) A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study. J Nanopart Res 14(8):1006CrossRefGoogle Scholar
  4. Anishur Rahman ATM, Majewski P, Vasilev K (2013) Gd2O3 nanoparticles: size dependent nuclear magnetic resonance. Contrast Media Mol Imaging 8(1):92–95Google Scholar
  5. Bridot J-L, Faure A-C, Laurent S, Rivière C, Billotey C, Hiba B, Janier M, Josserand V, Coll J-L, Elst LV, Muller R, Roux S, Perriat P, Tillement O (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129(16):5076–5084CrossRefGoogle Scholar
  6. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99(9):2293–2352CrossRefGoogle Scholar
  7. Caravan P, Farrar CT, Frullano L, Uppal R (2009) Influence of molecular parameters and increasing magneti field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media Mol Imaging 4(2):89–100CrossRefGoogle Scholar
  8. Cho HK, Cho H-J, Lone S, Kim D-D, Yeum JH, Cheong IW (2011) Preparation and characterization of MRI-active gadolinium nanocomposite particles for neutron capture therapy. J Mater Chem 21(39):15486–15493CrossRefGoogle Scholar
  9. Engström M, Klasson A, Pedersen H, Vahlberg C, Käll P-O, Uvdal K (2006) High proton relaxivity for gadolinium oxide nanoparticles. Magn Reson Mater Phys Biol Med 19(4):180–186CrossRefGoogle Scholar
  10. Evanics F, Diamente PR, Van Veggel FCJM, Stanisz GJ, Prosser RS (2006) Water-soluble GdF3/LaF3 nanoparticles-physical characterization and NMR relaxation properties. Chem Mater 18(10):2499–2505CrossRefGoogle Scholar
  11. Fatin-Rouge N, Tóth E, Meuli R, Bünzli J-CG (2004) Enhanced imaging properties of a GdIII complex with unusually large relaxivity. J Alloys Compds 374(1–2):298–302CrossRefGoogle Scholar
  12. Faucher L, Gossuin Y, Hocq A, Fortin M-A (2011a) Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticles. Nanotechnology 22(29):295103CrossRefGoogle Scholar
  13. Faucher L, Guay-Bégin A-A, Lagueux J, Côté M-F, Petitclerc É, Fortin M-A (2011b) Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI. Contrast Media Mol Imaging 6(4):209–218Google Scholar
  14. Feldmann C, Metzmacher C (2001) Polyol mediated synthesis of nanoscale MS particles (M=Zn, Cd, Hg). J Mater Chem 11:2603–2606CrossRefGoogle Scholar
  15. Fortin M-A, Petoral RM Jr, Söderlind F, Klasson A, Engström M, Veres T, Käll P-O, Uvdal K (2007) Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning. Nanotechnology 18(39):395501CrossRefGoogle Scholar
  16. Gossuin Y, Roch A, Muller RN, Gillis P (2002) An evaluation of the contributions of diffusion and exchange in relaxation enhancement by MRI contrast agents. J Magn Reson 158(1–2):36–42CrossRefGoogle Scholar
  17. Gossuin Y, Hocq A, Vuong QL, Disch S, Hermann RP, Gillis P (2008) Physico-chemical and NMR relaxometric characterization of gadolinium hydroxide and dysprosium oxide nanoparticles. Nanotechnology 19(47):475102CrossRefGoogle Scholar
  18. Guay-Bégin A-A, Chevallier P, Faucher L, Turgeon S, Fortin M-A (2012) Surface modification of gadolinium oxide thin films and nanoparticles using poly(ethylene)glycol-phosphate. Langmuir 28(1):774–782CrossRefGoogle Scholar
  19. Hifumi H, Yamaoka S, Tanimoto A, Citterio D, Suzuki K (2006) Gadolinium-based hybrid nanoparticles as a positive MR contrast agent. J Am Chem Soc 128(47):15090–15091CrossRefGoogle Scholar
  20. Kaludjerović GN, Dj Miljković, Momčilović M, Djinović VM, Mostarica Stojković M, Sabo TJ, Trajković V (2005) Novel platinum(IV) complexes induce rapid tumor cell death in vitro. Int J Cancer 116(3):479–486CrossRefGoogle Scholar
  21. Kim H-K, Lee G-H, Kim T-J, Chan Y (2009) Determination of correlation times of new paramagnetic gadolinium MR contrast agents by EPR and 17O NMR. Bull Korean Chem Soc 30(4):849–852CrossRefGoogle Scholar
  22. Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 87(5):901–927CrossRefGoogle Scholar
  23. Luo N, Tian X, Xiao J, Hu W, Yang C, Li L, Chen D (2013) High longitudinal relaxivity of ultra-small gadolinium oxide prepared by microsecond laser ablation in diethylene glycol. J Appl Phys 113(16):164306CrossRefGoogle Scholar
  24. McDonald MA, Watkin KL (2003) Small particulate gadolinium oxide and gadolinium oxide albumin microspheres as multimodal contrast and therapeutic agents. Invest Radiol 38(6):305–310Google Scholar
  25. Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311(2):417–424CrossRefGoogle Scholar
  26. Park JY, Baek MJ, Choi ES, Woo S, Kim JH, Kim TJ, Jung JC, Chae KS, Chang Y, Lee GH (2009) Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 3(11):3663–3669CrossRefGoogle Scholar
  27. Reiter WJ, Taylor KML, An H, Lin W, Lin W (2006) Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc 128(28):9024–9025CrossRefGoogle Scholar
  28. Schinkel CJ, Van Amstel WD (1973) Reduced magnetic moment of gadolinium in the oxide and the sulphate. Phys Lett A 44(7):467–468CrossRefGoogle Scholar
  29. Xinxue L, Guomin XU, Wang Y, Yijiang HU (2009) Density, viscosity, and excess properties for binary mixture of diethylene glycol monoethyl ether + water from 293.15 to 333.15 K at atmospheric pressure. Chin J Chem Eng 17(6):1009–1013CrossRefGoogle Scholar
  30. Zhou L, Gu Z, Liu X, Yin W, Tian G, Yan L, Jin S, Ren W, Xing G, Li W, Chang X, Hu Z, Zhao Y (2012) Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. J Mater Chem 22(3):966–974CrossRefGoogle Scholar
  31. Zhu H, Zhang C, Yin Y (2005) Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size. Nanotechnology 16(12):3079–3083CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Branka Babić-Stojić
    • 1
  • Vukoman Jokanović
    • 1
  • Dušan Milivojević
    • 1
  • Miroslav Požek
    • 2
  • Zvonko Jagličić
    • 3
  • Darko Makovec
    • 4
  • Katarina Arsikin
    • 5
  • Verica Paunović
    • 5
  1. 1.Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia
  2. 2.Department of Physics, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  3. 3.Institute of Mathematics, Physics and MechanicsLjubljanaSlovenia
  4. 4.Department for Materials SynthesisJožef Stefan InstituteLjubljanaSlovenia
  5. 5.School of Medicine, Institute of Microbiology and ImmunologyUniversity of BelgradeBelgradeSerbia

Personalised recommendations