Nitrogen-doped multi-walled carbon nanotubes modified with platinum, palladium, rhodium and silver nanoparticles in electrochemical sensing

  • Nikos G. Tsierkezos
  • Shereen Haj Othman
  • Uwe Ritter
  • Lars Hafermann
  • Andrea Knauer
  • J. Michael Köhler
Research Paper


Nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) were fabricated by means of chemical vapour deposition technique and decorated with platinum (PtNPs), palladium (PdNPs), rhodium (RhNPs) and silver (AgNPs) nanoparticles possessing diameter 2.7, 2.6, 2.7 and 3.4 nm, respectively. The electrochemical responses of composite films, further denoted as N-MWCNTs/MNPs (M: Pt, Pd, Rh and Ag) towards ferrocyanide/ferricyanide, [Fe(CN)6]3−/4− were investigated in large concentration range (0.099–0.990 mM) in potassium chloride solution (1.0 M). The findings demonstrate that the electrochemical response and sensitivity of N-MWCNTs are improved significantly upon modification with metal nanoparticles. A strong dependence of film’s electrochemical fineness on type of metal nanoparticles used for modification can be observed. Namely, the current response, the charge-transfer kinetics, and the detection capability of novel composite films enhance with the following order: N-MWCNTs < N-MWCNTs/RhNPs < N-MWCNTs/PdNPs < N-MWCNTs/PtNPs < N-MWCNTs/AgNPs. The findings demonstrate that the novel N-MWCNTs/MNPs composite films can be considered as powerful and useful materials for electrochemical sensing.


Electrochemical sensing Metal nanoparticles Multi-walled carbon nanotubes Palladium Platinum Rhodium Silver 



The authors would like to thank Mrs. Doreen Schneider and Mrs. Sabine Heusing (Ilmenau University of Technology). The scientific work concerning the synthesis of metal nanoparticles was financially supported by BMBF-project “BactoCat” (Kz: 031A161A).

Supplementary material

11051_2014_2660_MOESM1_ESM.docx (745 kb)
Supplementary material 1 (DOCX 745 kb)


  1. Attard GS, Bartlett PN, Colemen NRB, Elliott JM, Owen JR, Wang JH (1997) Mesoporous platinum films from lyotropic liquid crystalline phases. Science 278:838–840CrossRefGoogle Scholar
  2. Barreira SVP, García-Morales V, Pereira CM, Manzanares JA, Silva F (2004) Electrochemical impedance spectroscopy of polyelectrolyte multilayer modified electrodes. J Phys Chem B 108:17973–17982CrossRefGoogle Scholar
  3. Bernholc J, Brenner D, Buongiorno Nardelli M, Meunier V, Roland C (2002) Mechanical and electrical properties of nanotubes. Annu Rev Mater Res 32:347–375CrossRefGoogle Scholar
  4. Brahman PK, Dar RA, Tiwari S, Pitre KS (2012) Electrochemical behavior of gatifloxacin at multi-walled carbon nanotube paste electrode and its interaction with DNA. Rev Anal Chem 31:83–92CrossRefGoogle Scholar
  5. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  6. Chung HT, Won JH, Zelenay P (2013) Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat Commun 4:1922. doi:  10.1038/ncomms2944 CrossRefGoogle Scholar
  7. Doron A, Katz E, Willner L (1995) Organization of Au colloids as monolayer films onto ITO glass surfaces: application of the metal colloid films as base interfaces to construct redox-active monolayers. Langmuir 11:1313–1317CrossRefGoogle Scholar
  8. Dumitrescu I, Unwin PR, Macpherson JV (2009) Electrochemistry at carbon nanotubes: perspective and issues. Chem Commun 45:6886–6901CrossRefGoogle Scholar
  9. Galus Z (1994) Fundamentals of electrochemical analysis, 2nd edn. Ellis Horwood, New York, p 257Google Scholar
  10. He H, Xie Q, Zhang Y, Yao S (2005) A simultaneous electrochemical impedance and quartz crystal microbalance study on antihuman immunoglobulin G adsorption and human immunoglobulin G reaction. J Biochem Biophys Methods 62:191–205CrossRefGoogle Scholar
  11. Hirano A, Kanai M, Nara T, Sugawara M (2001) A glass capillary ultramicroelectrode with an electrokinetic sampling ability. Anal Sci 17:37–43CrossRefGoogle Scholar
  12. Jarvi TD, Sriramulu S, Stuve EM (1997) Potential dependence of the yield of carbon dioxide from electrocatalytic oxidation of methanol on platinum(100). J Phys Chem B 101:3649–3652CrossRefGoogle Scholar
  13. Knauer A, Köhler JM (2013) Screening of multiparameter spaces for silver nanoprism synthesis by microsegmented flow technique. Chem Ing Tech 85:467–475CrossRefGoogle Scholar
  14. Knauer A, Thete A, Li S, Romanus H, Csaki A, Fritzsche W, Köhler JM (2011) Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis. Chem Eng J 166:1164–1169CrossRefGoogle Scholar
  15. Knauer A, Csaki A, Möller F, Hühn C, Fritzsche W, Köhler JM (2012) Microsegmented flow-through synthesis of silver nanoprisms with exact tunable optical properties. J Phys Chem C 116:9251–9258CrossRefGoogle Scholar
  16. Köhler JM, Li S, Knauer A (2013) Why is micro segmented flow particularly promising for the synthesis of nanomaterials? Chem Eng Technol 36:887–899CrossRefGoogle Scholar
  17. Konopka SJ, McDuffie B (1970) Diffusion coefficients of ferri- and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry. Anal Chem 42:1741–1746CrossRefGoogle Scholar
  18. Li Y, Chen SM (2012) The Electrochemical properties of acetaminophen on bare glassy carbon electrode. Int J Electrochem Sci 7:2175–2187Google Scholar
  19. Liu S, Tang Z, Wang E, Dong S (2000) Electrocrystallized platinum nanoparticle on carbon substrate. Electrochem Commun 2:800–804CrossRefGoogle Scholar
  20. Lu Q, Hu S, Pang D, He Z (2005) Direct electrochemistry and electrocatalysis with hemoglobin in water-soluble quantum dots film on glassy carbon electrode. Chem Commun 20:2584–2585CrossRefGoogle Scholar
  21. Luo H, Shi Z, Li N, Gu Z, Zhang Q (2001) Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal Chem 73:915–920CrossRefGoogle Scholar
  22. Musamech M, Wang J, Merkoci A, Lin YH (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun 4:743–746CrossRefGoogle Scholar
  23. Nicholson R (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355CrossRefGoogle Scholar
  24. Niranjana E, Swamy BEK, Naik RR, Sherigara BS, Jayadevappa H (2009) Electrochemical investigations of potassium ferricyanide and dopamine by sodium dodecyl sulphate modified carbon paste electrode: a cyclic voltammetric study. J Electroanal Chem 631:1–9CrossRefGoogle Scholar
  25. Pandurangachar M, Swamy BEK, Chandrashekar BN, Gilbert O, Reddy S, Sherigara BS (2010) Electrochemical investigations of potassium ferricyanide and dopamine by 1-butyl-4-methylpyridinium tetrafluoro borate modified carbon paste electrode: a cyclic voltammetric study. Int J Electrochem Sci 5:1187–1202Google Scholar
  26. Pauliukaite R, Ghica ME, Fatibello-Filho O, Brett CMA (2010) Electrochemical impedance studies of chitosan-modified electrodes for application in electrochemical sensors and biosensors. Electrochim Acta 55:6239–6247CrossRefGoogle Scholar
  27. Perenlei G, Tee TW, Yusof NA, Kheng GJ (2011) Voltammetric detection of potassium ferricyanide mediated by multi-walled carbon nanotube/titanium dioxide composite modified glassy carbon electrode. Int J Electrochem Sci 6:520–531Google Scholar
  28. Roto R, Villemure G (2002) Electrochemical impedance spectroscopy of electrodes modified with thin films of Ni/Al/Cl layered double hydroxides. J Electroanal Chem 527:123–130CrossRefGoogle Scholar
  29. Szroeder P, Tsierkezos NG, Scharff P, Ritter U (2010) Electrocatalytic properties of carbon nanotube carpets grown on Si-wafers. Carbon 48:4489–4496CrossRefGoogle Scholar
  30. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458CrossRefGoogle Scholar
  31. Tsierkezos NG, Ritter U (2010) Electrochemical impedance spectroscopy and cyclic voltammetry of ferrocene in acetonitrile/acetone system. J Appl Electrochem 40:409–417CrossRefGoogle Scholar
  32. Tsierkezos NG, Ritter U (2011) Determination of impedance spectroscopic behaviour of triphenylphosphine on various electrodes. Anal Lett 44:1416–1430CrossRefGoogle Scholar
  33. Tsierkezos NG, Ritter U (2012) Electrochemical responses and sensitivities of films based on multi-walled carbon nanotubes in aqueous solutions. J Solut Chem 41:2047–2057CrossRefGoogle Scholar
  34. Wang J, Agnes L (1992) Miniaturized glucose sensors based on electrochemical codeposition of rhodium and glucose oxidase onto carbon-fiber electrodes. Anal Chem 64:456–459CrossRefGoogle Scholar
  35. Wang L, Wang E (2004) Direct electron-transfer between cytochrome c and a gold nanoparticles modified electrode. Electrochem Comm 6:49–54CrossRefGoogle Scholar
  36. Wang M, Wang L, Yuan H, Ji X, Sun C, Ma L, Bai Y, Li T, Li J (2004) Immunosensors based on layer-by-layer self-assembled Au colloidal electrode for the electrochemical detection of antigen. Electroanalysis 16:757–764CrossRefGoogle Scholar
  37. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (2003) Plugging into enzymes: nanowiring of redox enzymes by a gold nanoparticle. Science 299:1877–1881CrossRefGoogle Scholar
  38. Xu X, Jiang S, Hu Z, Liu S (2010) Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing. ACS Nano 4:4292–4298CrossRefGoogle Scholar
  39. Yu J, Zhao J, Hu C, Hu S (2007) Enhanced oxidation of estrone at multi-wall carbon nanotubes film electrode: direct evidence for the advantage of carbon nanotubes over other carbonaceous materials. J Nanosci Nanotechnol 7:1631–1638CrossRefGoogle Scholar
  40. Zhang J, Oyama M (2005) Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: characterization and electroanalytical application. Anal Chim Acta 540:299–306CrossRefGoogle Scholar
  41. Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14:1609–1613CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Nikos G. Tsierkezos
    • 1
  • Shereen Haj Othman
    • 1
  • Uwe Ritter
    • 1
  • Lars Hafermann
    • 2
  • Andrea Knauer
    • 2
  • J. Michael Köhler
    • 2
  1. 1.Department of Chemistry, Institute of Chemistry and BiotechnologyIlmenau University of TechnologyIlmenauGermany
  2. 2.Department of Physical Chemistry and Micro Reaction Technology, Institute of Chemistry and BiotechnologyIlmenau University of TechnologyIlmenauGermany

Personalised recommendations