Synthesis and luminescent properties of ultrasmall colloidal CdS nanoparticles stabilized by Cd(II) complexes with ammonia and mercaptoacetate

  • A. E. Raevskaya
  • O. L. StroyukEmail author
  • D. I. Solonenko
  • V. M. Dzhagan
  • D. Lehmann
  • S. Ya Kuchmiy
  • V. F. Plyusnin
  • D. R. T. Zahn
Research Paper


The synthesis of stable water-soluble ultrasmall 1.8 nm CdS nanoparticles co-stabilized with Cd(II) complexes with NH3 and mercaptoacetate ions is reported. The CdS nanoparticles emit broad-band photoluminescence with a peak at 2.3 eV and a quantum yield of up to 15 %. The photoluminescence decay is strongly non-exponential and characterized by an average radiative life-time increasing from 46 to 105 ns as the emission quantum energy decreases from 2.9 to 1.8 eV. The photoluminescence intensity and life-time decrease to about 50 % as the colloid temperature is elevated from 22 to 50 °C. This behavior is completely reversible and assumed to originate from the thermally activated dissociation of Cd(II)–NH3 complexes on the nanoparticle surface and the formation of Cd(II)–H2O complexes acting as the radiationless recombination sites. The strong temperature dependence of the luminescent properties coupled with the small size and reasonably high quantum yields of emission makes CdS nanoparticles co-stabilized with NH3 and mercaptoacetate attractive for bio-imaging, bio-sensing, and other applications.


Cadmium sulfide Radiative life-time Temperature dependence Thioglycolate Luminescence quenching Water-based colloids Bioimaging 



Authors thank Diana Voigt and Prof. Robert Magerle for their kind help in obtaining AFM images, and Dr. Steffen Schulze for performing HRTEM measurements. Authors acknowledge financial support of International Research Training Group “Materials and Concepts for Advanced Interconnects”, Cluster of Excellence “MERGE” (EXC 1075), Alexander von Humboldt Foundation, State Fund for Fundamental Research of Ukraine (Project # F53.3/019), and National Academy of Sciences of Ukraine (Joint Projects of NASU and Siberian Branch of RAS #07-03-12 Ukr and #49-02-14(U)).


  1. Borchert H, Talapin D, McGinley C, Adam S, Lobo A, de Castro A, Möller T, Weller H (2003) High resolution photoemission study of CdSe and CdSe/ZnS core-shell nanocrystals. J Chem Phys 119:1800–1807Google Scholar
  2. Chen X, Hutchison JL, Dobson PJ, Wakefield G (2008) A one-step aqueous synthetic route to extremely small CdSe nanoparticles. J Colloid Interface Sci 319:140–143CrossRefGoogle Scholar
  3. Dukes AD III, Samson PC, Keene JD, Davis LM, Wikswo JP, Rosenthal SJ (2011) Single-Nanocrystal Spectroscopy of White-Light-Emitting CdSe Nanocrystals. J Phys Chem A 115:4076–4081CrossRefGoogle Scholar
  4. Dzhagan V, Valakh M, Himcinschi C, Milekhin A, Solonenko D, Yeryukov N, Raevskaya O, Stroyuk O, Zahn D (2014) Raman and Infrared Phonon Spectra of Ultrasmall Colloidal CdS Nanoparticles. J Phys Chem C 118:19492–19497CrossRefGoogle Scholar
  5. Fahmi A, Pietsch T, Applehans D, Gindy N, Voit B (2009) Water-soluble CdSe nanoparticles stabilized by dense-shell glycodendrimers. New J Chem 33:703–706CrossRefGoogle Scholar
  6. Grodzyuk GY, Rayevskaya AE, Stroyuk AL, Kuchmiy SY, Vortman MY, Lemeshko VN, Shevchenko VV, Chertopalov SV, Kolomzarov YV, Sorokin VM (2011) Optical and electroluminescent properties of CdS nanoparticles stabilized by guanidine-containing dendrimers. Theoret Experim Chem 47:346–352Google Scholar
  7. Hesse R, Streubel P, Szargan R (2005) Improved accuracy of quantitative analysis using predetermined spectrometer transmission functions with UNIFIT 2004. Surf Interface Anal 37:589–607CrossRefGoogle Scholar
  8. Huang K, Demadrille R, Silly M, Sirotti F, Reiss P, Renault O (2010) Internal Structure of InP/ZnS Nanocrystals Unraveled by High-Resolution Soft X-ray Photoelectron Spectroscopy. ACS Nano 4:4799–4805CrossRefGoogle Scholar
  9. Jones M, Scholes GD (2010) On the use of time-resolved photoluminescence as a probe of nanocrystal photoexcitation dynamics. J Mater Chem 20:3533–3538CrossRefGoogle Scholar
  10. Kalasad MN, Rabinal MK, Mulimani BG (2009) Ambient Synthesis and Characterization of High-Quality CdSe Quantum Dots by an Aqueous Route. Langmuir 25:12729–12735CrossRefGoogle Scholar
  11. Kim BH, Hackett MJ, Park J, Hyeon T (2014) Synthesis, characterization, and application of ultrasmall nanoparticles. Chem Mater 26:59–71CrossRefGoogle Scholar
  12. Kosmella S, Venus J, Hahn J, Prietzel C, Koetz J (2014) Low-temperature synthesis of polyethyleneimine-entrapped CdS quantum dots. Chem Phys Lett 592:114–119CrossRefGoogle Scholar
  13. McBride JR, Dukes AD III, Schreuder MA, Rosenthal SJ (2010) On ultrasmall nanocrystals. Chem Phys Lett 498:1–9CrossRefGoogle Scholar
  14. Nanda J, Kuruvilla B, Sarma D (1999) Photoelectron spectroscopic study of CdS nanocrystallites. Phys Rev B 59:7473–7479CrossRefGoogle Scholar
  15. Park YS, Dmytruk A, Dmitruk I, Kasuya A, Takeda M, Ohuchi N, Okamoto Y, Kaji N, Tokeshi M, Baba Y (2010) Size-selective growth and stabilization of small CdSe nanoparticles in aqueous solutions. ACS Nano 4:121–128CrossRefGoogle Scholar
  16. Park YS, Okamoto Y, Kaji N, Tokeshi M, Baba Y (2011) Aqueous-phase synthesized small CdSe quantum dots: adsorption layer structure and strong band-edge and surface trap emission. J Nanopart Res. doi: 10.1007/s11051-011-0273-7 Google Scholar
  17. Pennycook TJ, McBride JR, Rosenthal SJ, Pennycook SJ, Pantelides ST (2012) Dynamic fluctuations in ultrasmall nanocrystals induce white light emission. Nano Lett 12:3038–3042CrossRefGoogle Scholar
  18. Raevskaya AE, Grodzyuk GY, Dzhagan VM, Stroyuk AL, Kuchmiy SY, Plyusnin VF, Grivin VP, Valakh MY (2010a) Synthesis and characterization of white-emitting CdS quantum dots stabilized with polyethyleneimine. J Phys Chem C 114:22478–22486Google Scholar
  19. Raevskaya AE, Stroyuk AL, Grodzyuk GY, Kuchmiy SY, Dzhagan VM, Plyusnin VF, Grivin VP (2010b) Dynamics of the radiative recombination of charge carriers in CdS nanoparticles stabilized with polyethyleneimine. Theoret Experim Chem 46:273–278CrossRefGoogle Scholar
  20. Raevskaya AE, Grodzyuk GY, Korzhak AV, Stroyuk AL, Kuchmiy SY, Dzhagan VM, Valakh MY, Plyusnin VF, Grivin VP, Mel’nik NN, Zavaritskaya TN, Kuche-renko TN, Plyashechnik OS (2011) Preparation and optical properties of polyethyleneimine-stabilized colloidal CdSe and CdSxSe1−x quantum dots. Theoret Experim Chem 46:416–421Google Scholar
  21. Raevskaya AE, Grodzyuk GY, Stroyuk AL, Kuchmiy SY, Plyusnin VF (2012) Influence of temperature on optical properties of polyethyleneimine-stabilized CdS nanoparticles. Theoret Experim Chem 48:95–101Google Scholar
  22. Rogach AL, Franzl T, Klar TA, Feldmann J, Gaponik N, Lesnyak V, Shavel A, Eychmüller A, Rakovich YP, Donegan JF (2007) Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-Art. J Phys Chem C 111:14628–14637CrossRefGoogle Scholar
  23. Rosson TE, Clairborne SM, McBride JR, Stratton BS, Rosenthal SJ (2012) Bright white light emission from ultrasmall cadmium selenide nanocrystals. J Am Chem Soc 134:8006–8009Google Scholar
  24. Sarma D, Santra P, Mukherjee S, Nag A (2013) X-ray photoelectron spectroscopy: a unique tool to determine the internal heterostructure of nanoparticles. Chem Mater 25:1222–1232CrossRefGoogle Scholar
  25. Tian J, Liu R, Zhao Y, Xu Q, Zhao S (2009) Controllable synthesis and cell-imaging studies on CdTe quantum dots together capped with glutathione and thioglycolic acid. J Colloid Interface Sci 336:504–509CrossRefGoogle Scholar
  26. Winkler U, Eich D, Chen Z, Fink R, Kulkarni S, Umbach E (1999) Detailed investigation of CdS nanoparticle surfaces by high-resolution photoelectron spectroscopy. Chem Phys Lett 306:95–102CrossRefGoogle Scholar
  27. Wu XC, Bittner AM, Kern K (2005) Synthesis, photoluminescence, and adsorption of CdS/dendrimer composites. J Phys Chem B 109:230–239Google Scholar
  28. Xia YS, Zhu CQ (2008) Aqueous synthesis of luminescent magic sized CdSe nanoclusters. Mater Lett 62:2103–2105CrossRefGoogle Scholar
  29. Xiao Q, Xiao C, Ouyang L (2008) Strong enhancement of band-edge photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method. J Lumin 128:1942–1947CrossRefGoogle Scholar
  30. Yu Q, Liu C (2009) Study of magic-size-cluster mediated formation of CdS nanocrystals: properties of the magic-size clusters and mechanism implication. J Phys Chem C 113:12766–12771CrossRefGoogle Scholar
  31. Zhou D, Lin M, Chen Z, Sun H, Zhang H, Sun H, Yang B (2011) Simple synthesis of highly luminescent water-soluble CdTe quantum dots with controllable surface functionality. Chem Mater 23:4857–4862CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. E. Raevskaya
    • 1
  • O. L. Stroyuk
    • 1
    Email author
  • D. I. Solonenko
    • 2
  • V. M. Dzhagan
    • 2
  • D. Lehmann
    • 2
  • S. Ya Kuchmiy
    • 1
  • V. F. Plyusnin
    • 3
    • 4
  • D. R. T. Zahn
    • 2
  1. 1.Department of PhotochemistryL.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of UkraineKievUkraine
  2. 2.Semiconductor PhysicsTechnische Universität ChemnitzChemnitzGermany
  3. 3.Institute of Chemical Kinetics and Combustion of Siberian Branch of Russian Academy of SciencesNovosibirskRussian Federation
  4. 4.Novosibirsk State UniversityNovosibirskRussian Federation

Personalised recommendations